

MATLAB Release Notes

The “MATLAB 6.5.1 Release Notes” on page 1-1 describe the changes
introduced in the latest version of MATLAB. The following topics are
discussed in these Release Notes:

• “New Features” on page 1-2

• “Major Bug Fixes” on page 1-11

• “Upgrading from an Earlier Release” on page 1-22

• “Known Software and Documentation Problems” on page 1-23

The MATLAB Release Notes also provide information about the earlier
versions of the product, in case you are upgrading from a version that was
released prior to Release 12.1. If you are upgrading from a release earlier
than Release 12.1, you should also see these sections:

• “MATLAB 6.5 Release Notes” on page 2-1

• “MATLAB 6.1 Release Notes” on page 3-1

• “MATLAB 6.0 Release Notes” on page 4-1

Printing the Release Notes
If you would like to print the Release Notes, you can link to a PDF version.

ii

iii

Contents

1
MATLAB 6.5.1 Release Notes

New Features . 1-2
MATLAB Interface to Generic DLLs . 1-2
Relational Operators Work with int64, uint64 1-3
Reading HDF5 Files . 1-3
Reading and Writing Data with JPEG Lossless Compression . 1-9
Reading and Writing L*a*b* Color Data 1-10

Major Bug Fixes . 1-11
Seeking Within a File . 1-11
Reshaping to More Than Two Dimensions 1-11
mkdir No Longer Fails On Windows NT 1-12
Using sqrt with Complex Input . 1-12
Multiplying Matrices with Non-Double Entries 1-12
Sorting a Sparse Row Vector or Matrix 1-12
diff Produces Correct Results with Logical Inputs 1-13
Opening Modal Dialog with Third-Party GUI Open 1-13
Serial Port Object with Latest Windows Service Pack 1-13
OpenGL Problem Using Notebook . 1-13
Lcc C Compiler Fixed to Handle Large C Files 1-13
Bug Fixes in MATLAB Interface to COM 1-14
Bug Fixes in Creating GUIs . 1-19

Upgrading from an Earlier Release . 1-22
Rebuild Macintosh MEX-files . 1-22
Function and Data Type Names in Generic DLL Interface . . 1-22

Known Software and Documentation Problems 1-23
Using xlsfinfo on Systems Without Excel 1-23

iv

2
MATLAB 6.5 Release Notes

New Features . 2-2
Development Environment Features . 2-2
Mathematics Features . 2-15
Programming and Data Types Features 2-21
Programming Tips Documentation . 2-30
Graphics Features . 2-31
External Interfaces/API Features . 2-32
Creating Graphical User Interfaces (GUIDE) Features 2-40

Major Bug Fixes . 2-43

Platform Limitations . 2-44
Patch Required for HP-UX 11.0 . 2-44
Development Environment Limitations 2-44
Mathematics Limitations . 2-46
Graphics Limitations . 2-47
Creating Graphical User Interfaces (GUIDE) Limitations . . . 2-47
You May Need to Overwrite the MATLAB Default Choice of
BLAS . 2-47

Upgrading from an Earlier Release . 2-49
Development Environment Upgrade Issues 2-49
Mathematics Upgrade Issues . 2-51
Programming and Data Types Upgrade Issues 2-52
Graphics Upgrade Issues . 2-75
External Interfaces/API Upgrade Issues 2-76
Creating Graphical User Interfaces (GUIDE) Upgrade Issues 2-85

Known Software and Documentation Problems 2-86

v

3
MATLAB 6.1 Release Notes

New Features . 3-2
Development Environment Features . 3-2
Mathematics Features . 3-5
Programming and Data Types Features 3-8
Graphics Features . 3-10
OpenGL Renderer Feature — Microsoft Windows 3-11
External Interfaces/API Features . 3-12
Creating Graphical User Interfaces — GUIDE 3-17

Major Bug Fixes . 3-18
Development Environment . 3-18
Mathematics . 3-18

Upgrading from an Earlier Release . 3-23
Development Environment Issues . 3-23
Mathematics Issues . 3-24
Programming and Data Types Issues . 3-26
Graphics Issue . 3-27
External Interfaces/API Issues . 3-27

Known Software and Documentation Problems 3-29
Development Environment Problems . 3-29
Documentation Updates . 3-30

4
MATLAB 6.0 Release Notes

New Features . 4-2
Development Environment Features . 4-2
Mathematics Features . 4-11
Programming and Data Types Features 4-22
Graphics Features . 4-26
3-D Visualization Features . 4-30
External Interfaces/API Features . 4-33

vi Contents

Creating Graphical User Interfaces – Features 4-39

Major Bug Fixes . 4-41
Figure KeyPressFcn . 4-41

Upgrading from an Earlier Release . 4-42
Development Environment Issues . 4-42
Programming and Data Types Issues . 4-42
External Interfaces/API Issues . 4-52
Creating Graphical User Interfaces – Upgrade Issues 4-57

Known Software and Documentation Problems 4-58
Development Environment Problems . 4-58
External Interfaces/API Problems . 4-60
Graphics Problems . 4-61
GUIDE Problems . 4-61
Documentation Updates . 4-61

1
MATLAB 6.5.1 Release
Notes

New Features 1-2
MATLAB Interface to Generic DLLs 1-2
Relational Operators Work with int64, uint64 1-3
Reading HDF5 Files 1-3
Reading and Writing Data with JPEG Lossless Compression . 1-9
Reading and Writing L*a*b* Color Data 1-10

Major Bug Fixes 1-11
Seeking Within a File 1-11
Reshaping to More Than Two Dimensions 1-12
mkdir No Longer Fails On Windows NT 1-12
Using sqrt with Complex Input 1-12
Multiplying Matrices with Non-Double Entries 1-12
Sorting a Sparse Row Vector or Matrix 1-13
diff Produces Correct Results With Logical Inputs 1-13
Opening Modal Dialog with Third-Party GUI Open 1-13
Serial Port Object with Latest Windows Service Pack 1-13
OpenGL Problem Using Notebook 1-13
Lcc C Compiler Fixed to Handle Large C Files 1-14
Bug Fixes in MATLAB Interface to COM 1-14
Bug Fixes in Creating GUIs 1-19

Upgrading from an Earlier Release 1-22
Rebuild Macintosh MEX-files 1-22
Function and Data Type Names in Generic DLL Interface . . 1-22

Known Software and Documentation Problems 1-23
Using xlsfinfo on Systems Without Excel 1-23

1 MATLAB 6.5.1 Release Notes

1-2

New Features
This section introduces the following new features and enhancements added in
MATLAB 6.5.1 since Version 6.5 (Release 13):

• “MATLAB Interface to Generic DLLs” on page 1-2

• “Relational Operators Work with int64, uint64” on page 1-3

• “Reading HDF5 Files” on page 1-3

If you are upgrading from a release earlier than Release 13, then you should
also see “New Features” on page 2-2 in the MATLAB 6.5 Release Notes.

MATLAB Interface to Generic DLLs
A shared library is a collection of functions that are available for use by one or
more applications running on a system. On Windows systems, the library is
precompiled into a dynamic link library (.dll) file. At run-time, the library is
loaded into memory and made accessible to all applications. The MATLAB
Interface to Generic DLLs enables you to interact with functions in dynamic
link libraries directly from MATLAB.

Documentation
For help on this new feature, see “MATLAB Interface to Generic DLLs” in the
External Interfaces documentation.

The examples used in the documentation use library (.dll) and header (.h)
files located in the MATLABROOT\extern\examples\shrlib directory. To use
these example files, first add this directory to your MATLAB path with the
following command:

addpath([matlabroot '\extern\examples\shrlib'])

Or you can make this your current working directory with this command:

cd([matlabroot '\extern\examples\shrlib'])

Restrictions for This Release

• At this time, the MATLAB Interface to Generic DLLs is supported on
Windows systems only.

New Features

1-3

• Passing a void ** argument to a function in a dynamic link library is not
supported in this release.

• Passing a complex structure argument to a function in a dynamic link library
is not supported in this release. (The term complex structure argument refers
to a structure constructed from other structures.)

• Passing an array of pointers, is not supported in this release. An example of
an array of pointers is an array of strings.

• MATLAB does not support manipulation of pointers returned by functions in
a dynamic link library at this time. An example of this type of operation is
the addition or subtraction of pointers.

Function and Data Type Names in Generic DLL Interface
Minor changes have been made to the naming of some functions and data types
in the Generic DLL interface. If you are upgrading from the post-release 13
download of MATLAB, see “Function and Data Type Names in Generic DLL
Interface” on page 1-22 of these release notes.

Relational Operators Work with int64, uint64
All relational operators such as, <, >, <=, >=, ~=, and == now support int64 and
uint64 data types.

Reading HDF5 Files
This release includes support for reading files that use the Hierarchical Data
Format, Version 5 (HDF5). HDF5 is a product of the National Center for
Supercomputing Applications (NCSA). The NCSA develops software and file
formats for scientific data management.

This section includes this information:

• An overview of the structure of an HDF5 file

• Determining the contents of an HDF5 file

• Reading data from an HDF5 file

• Mapping HDF5 data types to MATLAB data types

1 MATLAB 6.5.1 Release Notes

1-4

Note MATLAB has supported reading and writing HDF files for several
releases. The HDF and HDF5 specifications are not compatible.

Overview of HDF5 File Structure
HDF 5 files can contain multiple datasets. A dataset is a multidimensional
array of data elements. Datasets can have associated metadata. HDF5 files
store the datasets and attributes in a hierarchical structure, similar to a
directory structure. The directories in the hierarchy are called groups. A group
can contain other groups, datasets, attributes, links, and data types.

To illustrate this structure, the following figure shows the contents of the
sample HDF5 file included with MATLAB, example.h5.

Figure 1-1: Hierarchical Structure of example.h5 HDF5 File

/

/g1 /g2

/g1/g1.1 /g1/g1.2

/g1/g1.1/dset1.1.1

/g2/dset2.1 /g2/dset2.2

/g1/g1.1/dset1.1.2 /g1/g1.2/g1.2.1

slink

/attr1 /attr2

= Dataset

= Group

= Attribute

= Link

/g1/g1.1/dset1.1.1/attr1 /g1/g1.1/dset1.1.1/attr2

New Features

1-5

Determining the Contents of an HDF5 File
To extract an attribute or dataset from an HDF5 file, you must know the name
of the attribute or dataset. You specify the name as an argument to the
hdf5read function, described in “Reading Data from an HDF5 File” on
page 1-6.

To find the names of all the datasets and attributes contained in an HDF5 file,
you can use the hdf5info function. For example, to find out what the sample
HDF5 file, example.h5, contains, use this syntax.

fileinfo = hdf5info('example.h5');

The fileinfo structure returned by hdf5finfo contains various information
about the HDF5 file, including the name of the file and the version of the HDF5
library that MATLAB is using.

fileinfo =
Filename: 'example.h5'

 LibVersion: '1.4.2'
 Offset: 0
 FileSize: 8172
 GroupHierarchy: [1x1 struct]

To explore the contents of the file, examine the GroupHierarchy field.

level1 = fileinfo.GroupHierarchy

level1 =

 Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/'
 Groups: [1x2 struct]
 Datasets: []
 Datatypes: []
 Links: []
 Attributes: [1x2 struct]

The GroupHierarchy structure describes the top-level group in the file, called
the root group. HDF5 uses the UNIX convention and names this top-level
group / (forward slash), as seen in the Name field. The other fields in the
structure describe the contents of the group. In the example, the root group
contains two groups and two attributes. All the other fields, such as the

1 MATLAB 6.5.1 Release Notes

1-6

Datasets field, are empty. To traverse further down the file hierarchy, look at
one of the structures in the Groups field.

level2 = level1.Groups(2)

level2 =

 Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/g2'
 Groups: []
 Datasets: [1x2 struct]
 Datatypes: []
 Links: []
 Attributes: []

In this group, the Groups field is empty and the Datasets field contains two
structures. To get the names of the datasets, examine the Name field of either
of these Dataset structures. This structure provides other information about
the dataset including how many dimensions it contains (Dims) and the data
type of the data in the dataset (Datatype).

dataset1 = level2.Datasets(1)

dataset1 =

 Filename: 'L:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/g2/dset2.1'
 Rank: 1
 Datatype: [1x1 struct]
 Dims: 10
 MaxDims: 10
 Layout: 'contiguous'
 Attributes: []
 Links: []
 Chunksize: []
 Fillvalue: []

Reading Data from an HDF5 File
To read an HDF5 file, use the hdf5read function, specifying the name of the file
and the name of the dataset as arguments. For information about finding the

New Features

1-7

name of a dataset, see “Determining the Contents of an HDF5 File” on
page 1-5.

For example, to read the dataset, /g2/dset2.1 from the HDF5 file example.h5,
use this syntax:

data = hdf5read('example.h5','/g2/dset2.1');

The return value data, contains the values in the dataset, in this case a 1-by-10
vector of single precision values.

data =

 Columns 1 through 8

 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000
1.6000 1.7000

 Columns 9 through 10

 1.8000 1.9000

Mapping HDF5 Data Types to MATLAB Data Types
The hdf5read function maps HDF5 data types to MATLAB data types,
depending on whether the data in the dataset is in an atomic data type or a
non-atomic data type.

HDF5 Atomic Data Types. If the data in the dataset is stored in one of the HDF5
atomic data types, hdf5read uses the equivalent MATLAB data type to
represent the data. Each dataset contains a Datatype field that names the data
type. For example, the dataset /g2/dset2.2 in the sample HDF5 file includes
this data type information.

dtype = dataset1.Datatype
dtype =

 Name: []
 Class: 'H5T_IEEE_F32BE'
 Elements: []

1 MATLAB 6.5.1 Release Notes

1-8

The H5T_IEEE_F32BE class name indicates the data is a four-byte, big-endian,
IEEE floating point data type. (See the HDF5 specification for more
information about atomic data types.)

HDF5 Non-Atomic Data Types. If the data in the dataset is stored in one of the
HDF5 non-atomic data types, hdf5read represents the dataset in MATLAB as
an object. To access the data in the dataset, you must access the Data field in
the object.

To illustrate, this example uses hdf5read to read a dataset called /dataset2
from the HDF5 file, my_hdf5_file.h5. The dataset contains four elements;
each element is an HDF5 array.

data = hdf5read('my_hdf5_file.h5','/dataset2');

In MATLAB, the hdf5read function creates a a 1x4 array of hdf5.h5array
objects to represent this data.

whos

Name Size Bytes Class

data 1x4 hdf5.h5array

Grand total is 4 elements using 0 bytes

Index into the MATLAB array to view the first element in the dataset.

data(1)

hdf5.h5array:

Name: ''
Data: [4x5x3 int32]

To look at the raw data in the HDF5 array element, access the Data field in the
object.

data(1).Data

ans(:,:,1) =
0 1 2 3 4
10 11 12 13 14

New Features

1-9

20 21 22 23 24
30 31 32 33 34

ans(:,:,2) =
100 101 102 103 104
110 111 112 113 114
120 121 122 123 124
130 131 132 133 134

ans(:,:,3) =
200 201 202 203 204
210 211 212 213 214
220 221 222 223 224 230 231 232 233 234

The hdf5read function uses any of the following objects to represent HDF5
non-atomic data types.

• hdf5.h5array
• hdf5.h5enum
• hdf5.h5vlen
• hdf5.h5compound
• hdf5.h5string

Reading and Writing Data with JPEG Lossless
Compression
MATLAB now supports reading and writing data that has been compressed
using JPEG lossless compression. With lossless compression, you can recover
the original image from its compressed form. Lossless compression, however,
achieves lower compression ratios than its counterpart, lossy compression.

Using the imread function, you can read data that has been compressed using
JPEG lossless compression.

Using the imwrite function, you can write data to a JPEG file using lossless
compression. For the imwrite function, you specify the Mode parameter with
the 'lossless' value.

1 MATLAB 6.5.1 Release Notes

1-10

Reading and Writing L*a*b* Color Data
The imread function can now read color data that uses the L*a*b* color space
from TIFF files. The TIFF files can contain L*a*b* values that are in 8-bit or
16-bit CIELAB encodings or in 8-bit or 16-bit ICCLAB encodings.

If a file contains 8-bit or 16-bit CIELAB data, imread automatically converts
the data into 8-bit or 16-bit ICCLAB encoding. The 8-bit or 16-bit CIELAB data
cannot be represented as a MATLAB array because it contains a combination
of signed and unsigned values.

The imwrite function can write L*a*b* data to a file using either the 8-bit or
16-bit CIELAB encoding or the 8-bit or 16-bit ICCLAB encoding. You select the
encoding by specifying the value of the ColorSpace parameter.

Major Bug Fixes

1-11

Major Bug Fixes
MATLAB 6.5.1 includes these major bug fixes:

• “Seeking Within a File” on page 1-11

• “Reshaping to More Than Two Dimensions” on page 1-11

• “mkdir No Longer Fails On Windows NT” on page 1-12

• “Using sqrt with Complex Input” on page 1-12

• “Multiplying Matrices with Non-Double Entries” on page 1-12

• “Sorting a Sparse Row Vector or Matrix” on page 1-12

• “diff Produces Correct Results with Logical Inputs” on page 1-13

• “Opening Modal Dialog with Third-Party GUI Open” on page 1-13

• “Serial Port Object with Latest Windows Service Pack” on page 1-13

• “OpenGL Problem Using Notebook” on page 1-13

• “Lcc C Compiler Fixed to Handle Large C Files” on page 1-13

• “Bug Fixes in MATLAB Interface to COM” on page 1-14

• “Bug Fixes in Creating GUIs” on page 1-19

Note In addition to the bug fixes described on this page, there are several
bug fixes relating to MATLAB mathematics that are documented in a
separate HTML bug-fix report.

Seeking Within a File
In Release 13, when you opened a file in write-only ('wb') mode, you could not
seed to a position in the file without first seeking to the beginning of the file.
The fseek function has been fixed to allow seeking from any position of the file.

Reshaping to More Than Two Dimensions
In Release 13, under certain circumstances, reshaping an array to have more
than two dimensions produced a two dimensional result. This has been
corrected.

1 MATLAB 6.5.1 Release Notes

1-12

mkdir No Longer Fails On Windows NT
In Release 13, if on Windows NT you called the dir, exist, isdir, or what
function on a nonexistent directory name on a network drive, it caused a
windows handle to remain open to that directory name until you exit the
MATLAB session. This condition caused any attempts to use mkdir on that
directory to fail. This problem also affected the mkdir command when run from
a DOS command prompt. This condition would persist until you exited
MATLAB, thus freeing the handle.

This bug is fixed in this release.

Using sqrt with Complex Input
In Release 13, under certain circumstances, the sqrt function incorrectly
produced a real result when called with a complex input. This bug has been
corrected.

Multiplying Matrices with Non-Double Entries
In Release 13, MATLAB gave an incorrect answer or crashed for expressions of
the following forms:

• A' * B
• A * B'
• A' * B'
• A.' * B
• A * B.'
• A.' * B.'
• A' * B.'
• A.' * B'

when either A or B was a numeric, non-double value (single, int32, etc.). This
has been fixed for this release.

Sorting a Sparse Row Vector or Matrix
In Release 13, a segmentation violation occurred when you used the command
sort(S,2) to sort a sparse row vector or to sort a sparse matrix along its rows.
This bug is fixed in this release.

Major Bug Fixes

1-13

diff Produces Correct Results with Logical Inputs
In Release 13, the diff function could produce an incorrect result when you
passed a logical array to it. This bug is fixed in this release.

Opening Modal Dialog with Third-Party GUI Open
In Release 13, MATLAB would occasionally hang if the user tried to open a
modal dialog box when a third-party GUI was open. This no longer happens.

Serial Port Object with Latest Windows Service
Pack
Under certain hardware configurations, or when using the latest Service Pack
from Microsoft Windows, the serial port object in both MATLAB and the
Instrument Control Toolbox could cause MATLAB to crash or hang. This
problem is resolved in this release.

Several additional problems affecting the serial port have also been identified
and fixed:

1 The serial port object now obeys all supported parity configurations.

2 The serial port object now obeys all supported flow control configurations.

3 On Windows, serial ports higher than COM8 were not recognized by
MATLAB. As of this release, MATLAB supports up to 256 ports.

4 The serial port object generates output empty events after running the serial
port object continuously.

OpenGL Problem Using Notebook
This version of MATLAB uses an improved algorithm for selecting pixel
formats when using the UseGenericOpenGL feature on Windows. This
improvement fixes rendering problems seen with Notebook.

For information on graphics rendering, see Tech Note 1201.

Lcc C Compiler Fixed to Handle Large C Files
Lcc version 2.4.1 MathWorks patch 1.29 corrects a bug encountered when
compiling very large C files. Although this bug has only been observed when

1 MATLAB 6.5.1 Release Notes

1-14

using large Stateflow models, we suggest that you upgrade to the new version
to avoid potential problems when compiling MEX-files.

If you choose not to upgrade your version of Lcc, you can select a different C
compiler using mex -setup from the MATLAB command line.

Bug Fixes in MATLAB Interface to COM
This release includes the following bug fixes in the COM interface:

• “Blank Spreadsheet Cells Returned as NaNs” on page 1-14

• “Importing Excel Worksheets Containing Currency Format” on page 1-15

• “Getting the Forms Font Interface” on page 1-15

• “Programmatic Identifiers Containing Space Characters” on page 1-15

• “Naming of Interfaces Returned by invoke or get” on page 1-15

• “Optional Input and Output Arguments Supported” on page 1-16

• “Memory Leak with MATLAB as COM Client” on page 1-16

• “Support for Multiple Type Libraries” on page 1-16

• “MATLAB Now Supports Skipping an Optional Argument” on page 1-16

• “Saving COM Objects Created with actxserver” on page 1-17

• “Creating Certain Servers That Do Not Have Type Libraries” on page 1-17

• “Creating Microsoft Controls” on page 1-18

• “ActiveX Controls Created with Visual Basic 6.0” on page 1-18

• “Type Mismatch Error Fixed” on page 1-18

Blank Spreadsheet Cells Returned as NaNs
When reading from a Microsoft Excel spreadsheet in a COM environment
where MATLAB is the COM client and Excel the server, MATLAB now returns
any empty cells in the spreadsheet as NaNs. In MATLAB 6.5 (Release 13), this
same operation had returned a matrix of empty ([]) values.

For example, if the range A1 to D3 in a currently active workbook sheet contains
no data, MATLAB 6.5.1 returns the following matrix of NaN values:

eActiveSheet = get(e, 'ActiveSheet');
eActiveSheetRange = get(eActiveSheet, 'Range', 'A1', 'D3');

eActiveSheetRange.Value

Major Bug Fixes

1-15

ans =
 [NaN] [NaN] [NaN] [NaN]
 [NaN] [NaN] [NaN] [NaN]
 [NaN] [NaN] [NaN] [NaN]

Importing Excel Worksheets Containing Currency Format
In MATLAB 6.5, using a COM interface to Excel to import worksheet data
containing currency format failed with either a field access error or
segmentation violation. This bug is fixed in this release.

Getting the Forms Font Interface
In MATLAB 6.5, attempts to get the Font interface from a forms.textbox.1
control, as done in the second line below, caused MATLAB to crash.

h=actxcontrol('forms.textbox.1')
font = h.Font

This bug is fixed in this release.

Programmatic Identifiers Containing Space Characters
Using the actxcontrol function with a ProgID argument containing one or
more spaces failed in MATLAB 6.5. This bug is fixed in this release. For
example, the following command now works:

h = actxcontrol('rmocx.RealPlayer G2 Control.1')
h =
 COM.rmocx.realplayer g2 control.1

Naming of Interfaces Returned by invoke or get
In MATLAB 6.5, interfaces returned by the invoke and get functions were
given a name composed of the programmatic identifier (ProgID) for the
component and the name of the method or property being invoked. In cases
where a method or property implemented multiple interface types, this naming
algorithm resulted in interface names that were not always unique.

For example, when invoking a method that returns an Excel and a Word
interface, you could obtain any number of either type of interface (Excel or
Word), but you could not obtain interfaces of both types. In such cases, you
might be unable to access methods and properties of this interface.

1 MATLAB 6.5.1 Release Notes

1-16

In this release, interface names constructed by MATLAB are composed of the
name of the type library and the class name, thus ending this potential naming
conflict. If you invoke the method described in the last paragraph, MATLAB
now returns the following for any Excel interfaces that you request:

Interface.Microsoft_Excel_9.0_Object_Library._Application

And MATLAB returns a different handle for Word interfaces:

Interface.Microsoft_Word_9.0_Object_Library._Application

Optional Input and Output Arguments Supported
MATLAB now supports optional input and output arguments passed in COM
method calls. These arguments are declared as [in, optional] and [out,
optional] respectively.

Memory Leak with MATLAB as COM Client
In Version 6.5, a memory leak developed under certain circumstances when
MATLAB was configured as a COM client. This was caused by internal
MATLAB code failing to release memory allocated by the method
StringFromCLSID. This bug is fixed in this release.

Support for Multiple Type Libraries
MATLAB now supports multiple type libraries. If a COM object has many
interfaces that are described in multiple type libraries, MATLAB can now
retrieve the information correctly.

MATLAB Now Supports Skipping an Optional Argument
When calling ActiveX automation server methods, you can skip any optional
arguments in the argument list by specifying that argument value as an empty
matrix ([]). For example, the Add method shown below accepts as many as four
optional arguments:

Add(Before, After, Count, Type)

To call this method, specifying values for After and Count, but no values for
Before or Type, use this syntax.

addedsheet = invoke(Sheets, 'Add', [], Sheet1, 5);

Major Bug Fixes

1-17

Use [] for any arguments you skip, and that also precede the ones you do
specify in the argument list. In this case, the Before argument is not specified
but two subsequent arguments are.

Saving COM Objects Created with actxserver
Release 13 does not support saving COM objects that have been created with
the actxserver function. You can use save only on control objects (created with
actxcontrol). Attempting to use save on a COM server object causes MATLAB
to hang temporarily, and eventually crash.

This bug has been fixed in this release so that if you now attempt to save a
COM server object, MATLAB saves the object and any base properties of the
object, but does not attempt to save any interfaces that might exist.

The same behavior applies to the pack function on COM objects.

This example creates a server running Microsoft Excel, adds a new property to
the object, and saves it to the file excelserver.mat. It then reloads the server
from the MAT-file.

e = actxserver ('Excel.Application');
addproperty(e, 'NewProperty');
set(e, 'NewProperty', 500);
get(e, 'NewProperty')
ans =
 500

save('excelserver.mat')
clear
get(e, 'NewProperty')
??? Undefined function or variable 'e'.

load('excelserver.mat')
get(e, 'NewProperty')
ans =
 500

Creating Certain Servers That Do Not Have Type Libraries
In the Release 12.1 and Release 13 releases, the actxserver function
generated an error when attempting to create a COM object for certain servers.
One error commonly returned by actxserver in these releases was

1 MATLAB 6.5.1 Release Notes

1-18

h = actxserver('msdev.application')
??? Error using ==> actxserver
Cannot find type library. COM object creation failed.

This has now been fixed in this release.

h = actxserver('msdev.application')
h =
 COM.msdev.application

Creating Microsoft Controls
Earlier versions of MATLAB would crash if you attempted to create certain
Microsoft COM controls with the actxcontrol function. Examples of these
controls, by programmatic identifier (ProgID), are shown below. MATLAB now
successfully creates the controls.

mschart20lib.mschart msdatalistlib.datacombo
msdatagridlib.datagrid MSComCtl2.DTPicker.2
msdatalistlib.datalist MSHierarchicalFlexGridLib.MSHFlexGrid.6

ActiveX Controls Created with Visual Basic 6.0
In Release 13, if you attach a callback routine to an event, and this event is
eventually fired by a control created in Visual Basic 6.0, an error dialog box
appears with the message “Run-Time error.”

This has been fixed in this release.

Type Mismatch Error Fixed
Some COM objects may define methods that pass scalar inputs by reference.
This might appear in a type library signature as shown here for the x input:

functionname(double *x, [out] double *y)

Note that when input or output is not specifically stated, as is the case here for
x, MATLAB defaults to input ([in]). So the line shown above is interpreted by
MATLAB as

functionname([in] double *x, [out] double *y)

In MATLAB, the [in] and by-reference (*) specifications are considered
incompatible for scalar arguments. In Release 13, MATLAB ignores the
by-reference specifier for scalar inputs and passes such arguments by value

Major Bug Fixes

1-19

instead. Thus, any modified value for such an argument is not received by the
calling function. You may also see a type mismatch error displayed, even when
trying to access valid control methods.

MATLAB 6.5.1 fixes this bug by treating the [in] specifier for scalar references
as if it were [in,out].

In this example using MATLAB syntax, the GetWinVersionX function passes
six double arguments by reference, yet none are returned in MATLAB 6.5:

GetWinVersionX = int32 GetWinVersionX(
 handle, double, double, double, double, double, double)

In MATLAB 6.5.1, all scalar reference arguments specified (or defaulting to)
[in] are treated as [in,out], and all references cause a value to be returned:

GetWinVersionX = [int32, double, double, double, double,
 double, double] GetWinVersionX(
 handle, double, double, double, double, double, double)

Note that this bug affects only scalar arguments. The VT_DISPATCH and
VT_VOID types are not affected.

Bug Fixes in Creating GUIs
This release includes the following bug fixes related to creating, converting,
and exporting GUIs:

• “Converting a MATLAB 5.3 GUI to MATLAB 6.5” on page 1-19

• “Using GUIDE on Existing GUIs with Empty Tag Property” on page 1-20

• “Exporting GUIs from GUIDE to a Single M-file” on page 1-20

• “MATLAB Hangs when Using Property Inspector from GUIDE” on page 1-20

• “Recursion Limit Error when Running Existing GUIs from GUIDE” on
page 1-20

Converting a MATLAB 5.3 GUI to MATLAB 6.5
Converting a MATLAB 5.3 (R11) GUI to MATLAB 6.5 sometimes resulted in
the error:

Unhandled internal error in guidemfile. Reference to non-existent
field 'blocking'

1 MATLAB 6.5.1 Release Notes

1-20

This problem has been fixed.

Using GUIDE on Existing GUIs with Empty Tag Property
In MATLAB Version 6.5, editing a GUI that contained a uicontrol whose Tag
property was set to [] (empty) sometimes generated the following error
message:

Unhandled internal error in guidefunc.
Error using ==> set
Value must be a string

This problem has been fixed.

Exporting GUIs from GUIDE to a Single M-file
In MATLAB Version 6.5, some GUIs exported from GUIDE failed to open. In
other cases, attempting to export a GUI resulted in one of the following errors:

??? Error using ==> guidefunc
Error using ==> ==
Matrix dimensions must agree.

??? Error using ==> guidefunc
Error using ==> ==
Function '==' is not defined for values of class 'struct'.

These problems have been fixed.

MATLAB Hangs when Using Property Inspector from GUIDE
Using the Property Inspector from GUIDE sometimes caused MATLAB
Version 6.5 to hang. This problem has been fixed.

Recursion Limit Error when Running Existing GUIs from GUIDE
In MATLAB Version 6.5, running some existing GUIs from GUIDE generated
the following error message:

??? Error using ==> guidefunc
Maximum recursion limit of 500 reached. Use
set(0,'RecursionLimit',N) to change the limit. Be aware that
exceeding your available stack space can crash MATLAB and/or
your computer.

Major Bug Fixes

1-21

Could not create figure:
127

This problem has been fixed.

1 MATLAB 6.5.1 Release Notes

1-22

Upgrading from an Earlier Release
If you are upgrading from a release earlier than Release 13, see “Upgrading
from an Earlier Release” on page 2-49 of MATLAB 6.5 Release Notes.

Rebuild Macintosh MEX-files
Macintosh MEX-files (named .mex) built with MATLAB 5.2 or older will not
work with MATLAB 6.5 or later. You must recompile these files, creating a new
file with the file extension .mexmac.

Function and Data Type Names in Generic DLL
Interface
The following functions have been renamed since the initial download release
of the Generic DLL Interface:

• The libmethods function is now called libfunctions.

• The libmethodsview function is now called libfunctionsview.

All data types ending in Ref are now suffixed with Ptr. For example, doubleRef
is now called doublePtr, and int16Ref is now int16Ptr.

All data types ending in RefPtr are now suffixed with PtrPtr. For example,
doubleRefPtr is now called doublePtrPtr, and int16RefPtr is now
int16PtrPtr.

Known Software and Documentation Problems

1-23

Known Software and Documentation Problems
For a list of bugs reported in the previous release that remain open, see “Known
Software and Documentation Problems” on page 2-86 in the MATLAB 6.5
Release Notes.

Using xlsfinfo on Systems Without Excel
There is a bug in the xlsfinfo function that causes it to fail with the following
error message when run on systems where Microsoft Excel is not installed.

Undefined function or variable 'xlsfinfo_old'.

We intend to fix this in the next release of MATLAB.

1 MATLAB 6.5.1 Release Notes

1-24

2
MATLAB 6.5 Release
Notes

New Features 2-2
Development Environment Features 2-2
Mathematics Features 2-15
Programming and Data Types Features 2-21
Programming Tips Documentation 2-30
Graphics Features 2-31
External Interfaces/API Features 2-32
Creating Graphical User Interfaces (GUIDE) Features . . . 2-40

Major Bug Fixes 2-43

Platform Limitations 2-44
Patch Required for HP-UX 11.0 2-44
Development Environment Limitations 2-44
Mathematics Limitations 2-46
Graphics Limitations 2-47
Creating Graphical User Interfaces (GUIDE) Limitations . . 2-47
You May Need to Overwrite the MATLAB Default

Choice of BLAS 2-47

Upgrading from an Earlier Release 2-49
Development Environment Upgrade Issues 2-49
Mathematics Upgrade Issues 2-51
Programming and Data Types Upgrade Issues 2-52
Graphics Upgrade Issues 2-75
External Interfaces/API Upgrade Issues 2-76
Creating Graphical User Interfaces (GUIDE) Upgrade

Issues . 2-85

Known Software and Documentation Problems 2-86

2 MATLAB 6.5 Release Notes

2-2

New Features
This section introduces the new features and enhancements added in MATLAB
6.5 since Version 6.1 (Release 12.1). This discussion of new MATLAB features
is organized into the following categories:

• “Development Environment Features” on page 2-2

• “Mathematics Features” on page 2-15

• “Programming and Data Types Features” on page 2-21

- “Programming Tips Documentation” on page 2-30

• “Graphics Features” on page 2-31

• “External Interfaces/API Features” on page 2-32

• “Creating Graphical User Interfaces (GUIDE) Features” on page 2-40

If you are upgrading from a release earlier than Release 12.1, then you should
also see “New Features” on page 3-2.

Development Environment Features
MATLAB 6.5 adds the following development environment features and
enhancements.

JVM Version
On the Windows, Linux, Solaris, and Macintosh platforms, MATLAB uses Java
Virtual Machine 1.3.1. Other platforms that support Java continue to use the
JVM version they used for Release 12. To see the Java version that MATLAB
uses, type

version -java

The HP-UX and IBM platforms do not support Java-based graphical user
interfaces in MATLAB, and related products that rely on Java are not available
on these platforms. See “Platform Limitations” on page 2-44 for details.

New Features

2-3

Startup
The toolbox path caching preference is on by default. This can result in
significantly faster startup when MATLAB runs over a network or when you
have many toolboxes. You will not see the improvement the first time you run
MATLAB 6.5, but will after that. If you add or remove files and directories from
$matlabroot/toolbox directories, you may need to update the cache. For
details, see “Toolbox Path Caching” in the Development Environment
documentation.

Desktop

Start Button. Click the Start button, , located in the lower left corner of
the desktop, to readily access common MATLAB tools and features. It offers
capabilities similar to those in the Launch Pad.

Status Bar. The status bar in the desktop now indicates the current state of
MATLAB operations. For example, a Busy message appears while MATLAB is
running an M-file.

New Profiler. Use the new Profiler graphical interface to assess your M-files so
you can make changes to improve their performance. Select View -> Profiler
from the desktop, or type profile viewer. The Profiler helps you take
advantage of the new performance improvements that are part of the JIT
Accelerator for MATLAB. For details, see “The Profiler” in the MATLAB
Programming and Data Types documentation.

The new Profiler is based on the results returned by the profile function. You
can still use the profile and profreport functions as you used them in
Release 12.1.

Check for Updates. From the Web menu, select Check for Updates. A dialog box
appears, listing the versions for all MathWorks products installed on your
system. Click Check for Updates in the dialog box, which accesses the
MathWorks Web site to determine if more recent versions are available.

Access MATLAB Central. From the Web menu, select MATLAB Central to access
a page on the MathWorks Web site for exchanging M-files with other users and
for accessing the comp-sys.soft.matlab Usenet newsgroup.

2 MATLAB 6.5 Release Notes

2-4

Change Current Directory. On UNIX platforms, you can now change the current
directory field in the desktop toolbar using the ... button to browse for the
directory.

Apply Preferences. There is now an Apply button in the Preferences dialog box.
When you click Apply, the preference change is made, but the dialog box
remains open. This allows you to more easily experiment with changes to
preferences.

Command Window

Find Feature. To find a term in the Command Window, select Edit -> Find. The
Find dialog appears, in which you can enter a term and look for the previous
or next occurrence.

Incremental Search. This is similar to the Emacs incremental search feature. In
the Command Window, press Ctrl+S (or Ctrl+Shift+S for Windows key
bindings) to display an incremental search field. Type a string in the field and
the next occurrence of that string in the Command Window is highlighted. For
more about this feature, see “Incremental Search” in the Development
Environment documentation.

Hyperlinks to Run Functions. A new feature, matlab:, creates a hyperlink for
specified text, which when clicked, runs the specified function. For example,

disp('Generate magic square')

displays the link

Generate magic square

in the Command Window. When the user clicks the "Generate magic square"
link, MATLAB runs magic(4). Use this feature, for example, with the disp or
fprintf functions.

Printing. You can now specify options for printing from the Command Window,
such as including a header and printing line numbers. Select File -> Page
Setup to set options. For more information, see “Page Setup Options for
Printing” in the MATLAB documentation.

New Features

2-5

Preferences. There are new Command Window preferences for Keyboard and
Indenting:

• Command line key bindings—Specify Emacs (MATLAB standard) or
Windows. For example, with Emacs, Ctrl+F moves the cursor forward one
character, whereas with Windows, Ctrl+F opens the Find dialog box.

• Tab key—These preferences previously existed on the general preferences
tab for the Command Window.

• Parentheses matching options—MATLAB alerts you to matches and
mismatches in pairs of delimiters, (that is, in parentheses (), brackets [], and
braces { }), based upon MATLAB language syntax rules.

For details on the new preferences, see “Keyboard and Indenting Preferences”
in the Development Environment documentation.

Open Selection. While in the Command Window, you can select text, right-click,
and select Open selection. This runs the open function for the item you
selected so that it opens in the appropriate tool. For example, you can open a
variable in the Workspace browser, or open a file or function in the Editor. If
no tool exists for the selected item, Open selection calls edit.

Command History

Printing. You can print the contents of the Command History and specify
various printing options, such as including a header and printing line numbers.
From the Command History window, select File -> Page Setup to set options.
For more information, see “Page Setup Options for Printing” in the MATLAB
documentation.

Find Feature. To find a term in the Command History, select Edit -> Find. The
Find dialog appears, in which you can enter a term and look for the previous
or next occurrence.

Autosave Command History. The Command History is automatically saved to a
file on a regular basis. Specify options for what is saved and how often using
Command History preferences. For details, see “Command History
Preferences” in the Development Environment documentation.

2 MATLAB 6.5 Release Notes

2-6

Workspace Browser
You can rename a variable in the Workspace browser by right-clicking it and
selecting Rename from the context menu. You can also select and copy
variables in the Workspace browser, which puts their names (comma
separated) onto the clipboard. You can then paste the names, for example, into
the Command Window.

If you copy data from another application to the clipboard, use Ctrl+V in the
Workspace browser to import the data to MATLAB using the Import Wizard.

Set Path
In the Set Path dialog box, you can now select multiple directories to remove
from or to move within the path.

Current Directory Browser

Find M-Files Only. There are two new Look in options in the Find dialog box. Use
them to limit the search in the current directory or in the entire MATLAB path
to find only M-files.

Deleted Files to Recycle Bin. On Windows platforms, files you delete while using
the Current Directory browser go to the Recycle Bin. You can by bypass the
Recycle Bin by using Shift+Delete.

Change Current Directory. For UNIX platforms, you can now change the current
directory field in the Current Directory browser toolbar using the ... button to
browse for the directory.

Changes Automatically Update Display. When you make changes to the current
directory outside of MATLAB, the changes are automatically reflected in the
Current Directory browser display. You do not have to select Refresh to show
the changes.

New Features

2-7

File Operations
Following are functions that are new or have changed since the previous
release. For more information, type doc functionname.

Function New or
Changed

Description

copyfile Changed The writable argument has been
superseded by the f argument, although
writable is still allowed for MATLAB 6.5.
The function now also copies directories. It
replaces the destination files or directories
with the same name as the source files or
directories without a warning—in previous
versions, there was a warning in that event.
If the destination files or directories are
read-only and the f (or writable) argument
is not used, copyfile will fail.

fileattrib New Set or get attributes of file or directory. The
fileattrib function is like the DOS attrib
command and the UNIX chmod command.

mkdir Changed Modified the message status—mkdir no
longer returns 2 if the directory already
exists, but instead displays a warning. It
also has an enhanced return format.

movefile New Move file or directory. Can also be used to
rename a file or directory.

rmdir New Remove directory, and optionally its
contents as well.

winopen New For Windows users, allows you to open a file
in the appropriate application, as if you
double-clicked it in Windows Explorer.

2 MATLAB 6.5 Release Notes

2-8

Array Editor

Spreadsheet Behavior. You can now select and delete columns. You can cut, copy,
paste, and delete cells. You can also exchange cells with Microsoft Excel via the
operating system clipboard using these features.

You can set a preference to specify where the cursor moves to when you press
Enter. For more about these enhancements, see the “Array Editor” in the
Development Environment documentation.

Greater Number of Elements. The Array Editor can now show arrays with more
than 10,000 elements. It does not support arrays with more than 65,536 (2^16)
elements.

Editor/Debugger

Column Number, Line Number, and Current Function/Subfunction. In the Editor status
bar, you can see the column number, line number, and function or subfunction
for the current cursor location. When the Editor is docked in the desktop, the
information appears in the desktop status bar.

Autosave Files. Files you change in the Editor are now automatically saved to a
backup file on a regular basis. Use File -> Preferences -> Editor/Debugger ->
Autosave to specify autosave options. For more information, see “Autosave” in
the Editor/Debugger documentation.

Incremental Search. This is similar to the Emacs incremental search feature.
Press Ctrl+S (or Ctrl+Shift+S for Windows key bindings) to display an
incremental search field. Type a string in the field and the next occurrence of
that string in the current file is highlighted. For more about this feature, see
“Incremental Search” in the Editor/Debugger documentation.

Find Previous. You can find the previous occurrence of a string in a file by using
Edit -> Find Previous after using any of the other Edit -> Find menu items.

Comment Formatting. You can specify a preference for the maximum width of
comment lines and then apply that maximum to selected lines. You can also
specify a preference to automatically wrap comment lines when they reach the
maximum width. For more about this feature, see “M-file Comment
Formatting” in the Editor/Debugger documentation.

New Features

2-9

Preferences for Parentheses Matching. There are new preferences for parentheses
matching. The Editor/Debugger alerts you to matches and mismatches in pairs
of delimiters, that is, in parentheses (), brackets [], and braces { }, based upon
MATLAB language syntax rules. For more information, see “Parentheses
Matching Preferences” in the Editor/Debugger documentation.

Printing Options. You can specify options for printing a file from the Editor, for
example, including a header, by using File -> Page Setup. For more
information, see “Page Setup Options for Printing” in the MATLAB
documentation.

Invalid Breakpoints. When breakpoints are invalid, they appear gray instead of
red. Breakpoints are invalid if there are unsaved changes or if there is a syntax
error in the file. The breakpoints become valid when you save the file or when
you fix the syntax error and save the file. For more information, see “Valid and
Invalid Breakpoints” in the Editor/Debugger documentation.

Cannot Save in Debug Mode. You cannot save changes to an M-file while in debug
mode. First quit debug mode and then save the file.

Integrated Text Editor Preference. If you install EmacsLink, a tool that allows you to
debug M-files from the Emacs editor, you can specify an Editor/Debugger
preference to use Emacs and EmacsLink for your default editing and
debugging tools. For more information, see “Integrated Text Editor” in the
Editor/Debugger documentation.

Wider and Resizable Line Number Column. You can view line numbers that contain
up to nine digits. Drag the separator bar to the right of the line number column
to make the column narrower or wider, allowing you to save space or see more
digits.

Subfunctions Listed Alphabetically. When you click the function button on the
toolbar, the subfunctions are listed alphabetically. Previously they were listed
in the order that they appeared in the M-file.

Open Selection. In an open M-file, the Open Selection feature has been
enhanced. You can now jump from a subfunction call to the subfunction code
within the current function M-file. To use this feature, select a subfunction call
in an M-file, right-click, and select Open Selection from the context menu (or
select Open Selection from the File menu). The Editor scrolls to that
subfunction in the M-file. If that subfunction does not exist in the file, the open

2 MATLAB 6.5 Release Notes

2-10

function runs for the selected item, so that it opens in the appropriate tool. For
example, you can open a variable in the Workspace browser, or open another
file or function in the Editor. If no tool exists for the selected item, Open
selection looks for a matching file in a private directory in the current
directory.

Default Directory in Open Dialog Box and for New Files. The Open dialog box now
opens to the MATLAB current directory. However, if you access the Open
dialog box from the Editor, it opens to the directory for the current file in the
Editor. When you create a new file, it is located in the MATLAB current
directory.

Bookmark Support for All File Types. You can include bookmarks in any file type.
Previously you could include bookmarks only in M-files.

New and Discontinued Features in edit Function. There is a new form of the edit
function, edit fun1 fun2 fun3 ..., which opens all of the specified files in the
default editor.

No longer supported are edit fun1 in fun2 and edit fun(a,b,c).

Save Not Available. Save is only available if a file has been changed. If there are
no unsaved changes in a file, you can still use Save As, but you cannot use
Save.

Help and Help Browser

Demos. To access demonstrations for all the MathWorks products you have
installed, use the new Demos tab in the Help browser. For more information,
see “Running Demonstrations” in the Development Environment
documentation.

Boolean Operators in Search. In the Help browser Search pane, you can include
the Boolean operators AND, OR, and NOT between terms you enter in the Search
field. The operators must be in all capital letters and there must be a space
before and after each operator.

For example, type print OR printing AND figure NOT exporting to find all
pages that contain the words print and figure, or printing and figure, but
only if the page does not contain the word exporting. At the top of the results
list are any pages that contain all the AND and OR words in page titles.

New Features

2-11

Changes to Search Term Highlights. When you perform a search and select a
resulting page to view, each word in the search term appears highlighted in a
different color in the page. To clear the highlights, click the reload button
in the Help browser toolbar.

Setting the Documentation Location. You can now set the location where help files
are stored (called the Documentation location in Help preferences) using the
docroot function. You can include a docroot command in an M-file, such as a
startup.m file.

Open Link in New Window. To open a linked page in a separate Help browser
window, press Alt and right-click the link, or click the middle mouse button.

Visited Links. Visited links usually appear in a different color than unvisited
links.

Print Range of Pages. When you print from the Help browser, the Pages field in
the Print dialog box now shows the total number of printed pages required for
the currently displayed page and lets you specify which of those pages to print.

Document Type Icons. Icons at the top two levels of the Contents pane indicate
the type of document so you can quickly find a particular document type in the
listing. For example, getting started documentation is represented by (a
green arrow), and function and blockset reference documentation are
represented by (orange pages).

Release Notes Location. Release notes for a product are now listed with that
product in the Contents pane.

CD-ROMs for Documentation. For Windows platforms, there are now two
CD-ROMS for documentation. To read PDF documentation from the CD-ROM,
use the PDF Documentation CD.

Source Control
This release features expanded source control capabilities on PC platforms.
You can interface to your source control system from by using MATLAB,
Simulink, or Stateflow menus, or by using functions from the MATLAB
Command Window.

2 MATLAB 6.5 Release Notes

2-12

The available source control system interface operations on PC platforms are

• Get latest version of file

• Add file

• Check out file

• Check in file

• Undo check out

• Remove file

• Show file version history

• Show file version differences

• Show file properties

• Start source control system

Notebook

Word Macros. Newer versions of Word have macro security features that might
impact your use of Notebook. For details, see “Configuring Notebook” in the
Development Environment documentation.

Word Versions Supported. Word for Office 2000 and 2002 (Office XP) are now
supported. Word for Office 95 is no longer supported.

Using setup Option. The setup option is now easier to use. After running
notebook -setup, you are prompted for your Windows version. The function
performs all the remaining configuration with no additional input required
from you. Only if the setup cannot find the files needed will you be prompted
for additional information.

General

Demos. View and run demos via the new Demos pane in the Help browser. For
platforms that do not support Java, run the demo command, which opens the
Release 12.1 demo interface, and then follow instructions to access the demo
files.

New perl Function. A new function, perl, calls the Perl script specified by the file
perlfile using the appropriate Perl executable.

New Features

2-13

New Startup Option. There is a new startup option, -logfile log. It makes a
copy of any output to the Command Window in the file log, including any crash
reports.

Import/Export

New Functions for Exchanging Files with the Internet. MATLAB provides a set of
functions for exchanging files with the Internet. These are URL, ZIP, and
e-mail functions.

• Downloading URL content—From within MATLAB, you can read and save
the content of a URL. The urlread function reads the content to a string
variable in the MATLAB workspace. The urlwrite function saves the
content to a file.

• ZIP functions—You can compress and uncompress files and directories from
MATLAB using the zip and unzip functions.

• Sending e-mail—Use sendmail to send an electronic mail message, and
optionally attachments, to a list of addresses.

File Format Support. The following table lists new import and export functions
and highlights changes to existing functions.

Function Purpose

cdfepoch This new function converts a MATLAB date
number or date string into the format supported by
the Common Data Format (CDF).

cdfwrite This new function supports writing data from
MATLAB into Common Data Format (CDF) files.

imfinfo The imfinfo function can now return information
about Sun Raster image (RAS) files. In addition,
when used with JPEG files, imfinfo now returns
any comments that may be included in the
graphics file. These comments are returned in the
comment field as a cell array.

2 MATLAB 6.5 Release Notes

2-14

MATLAB HDF Import Tool. MATLAB 6.5 includes a new graphical user interface for
importing data from an HDF or HDF-EOS files. This tool provides a graphical
view of the data sets and metadata in an HDF file and lets you import selected
data sets from the file by clicking a button.

imformats This new function eases the task of adding read
and write support for new file formats.

imread The imread function can now read Sun Raster
image (RAS) files and files over the internet.

imwrite The imwrite function now supports two new
formats: Sun Raster image (RAS) and PNM. PNM
is not a file format but represents three other
image formats, PBM, PGM, and PPM. When you
specify PNM, imwrite chooses one of these three
formats based on the contents of the data. In
addition, imwrite supports the JPEG-specific
parameter comment, in which you can specify any
comment you want included in a JPEG file.

multibandread This new function supports importing data from
files that contain data divided into multiple bands,
sometimes called raw files.

multibandwrite This new function supports writing
multidimensional arrays from MATLAB to a file in
multiband format.

Function Purpose (Continued)

New Features

2-15

Mathematics Features
MATLAB 6.5 adds the following mathematics features and enhancements:

• “Delay Differential Equations” on page 2-15

• “Singular Boundary Value ODE Problems” on page 2-15

• “Integration Over a Volume” on page 2-16

• “Sparse, Square, Banded Matrix Left Division” on page 2-16

• “Sparse Matrix LU Factorization and Solve” on page 2-16

• “Matrix Math Performance Improvements for Triangular Matrices” on
page 2-17

These features are described below. At the end of this section are tables that
summarize changes to the MATLAB math functions:

• “Summary of New Functions” on page 2-18

• “Summary of Changed Functions” on page 2-18

Delay Differential Equations
MATLAB now provides the capability to solve delay differential equations
(DDEs) with constant delays. The DDE solver, dde23, provides an interface
that is similar to the MATLAB ODE solver interface and is as easy to use. The
supporting functions ddeset, ddeget, and deval enable you to set integration
properties that affect problem solution and to evaluate the numerical solution
obtained with dde23.

See “Initial Value Problems for DDEs” and the function descriptions in the
MATLAB documentation for detailed information.

Singular Boundary Value ODE Problems
The function bvp4c can now solve a class of singular BVPs of the form

posed on an interval with . The bvpset function provides a new
'SingularTerm' integration property, which you can use to pass the constant
matrix to bvp4c.

y′ 1
x
---Sy f x y,()+=

0 g y 0() y b(),()=

0 b,[] b 0>

S

2 MATLAB 6.5 Release Notes

2-16

See “Solving Singular BVPs” and the function descriptions in the MATLAB
documentation for more information.

Integration Over a Volume
A new function, triplequad, evaluates a triple integral that you provide as a
function, fun(x,y,z), over a three dimensional rectangular region. As a
default, triplequad uses the quadrature function quad to perform the
integration. You can elect to use quadl instead or provide your own quadrature
function.

Logarithmic Derivative of the Gamma Function
A new function psi evaluates the function, also known as the digamma
function, for each element of an array X. You can also use psi to evaluate the
kth derivative of , or a sequence of derivatives of different orders, at the
elements of X.

Sparse, Square, Banded Matrix Left Division
Matrix left division (\) now uses banded solvers for X = A\b where A is sparse,
square, and banded. Band density is defined as
(# nonzeros in the band)/(# nonzeros in a full band). Band density = 1.0 if
there are no zeros on any of the three diagonals.

If A is real and tridiagonal, i.e., band density = 1.0, and B is real with only one
column, X is computed quickly using Gaussian elimination without pivoting.

If the tridiagonal solver detects a need for pivoting, or if A or B is not real, or if
B has more than one column, but A is banded with band density greater than
the new spparms parameter 'bandden' (default = 0.5, in the interval
[0.0,1.0]), then X is computed using LAPACK.

Sparse Matrix LU Factorization and Solve
LU factorization and solve for sparse matrices now uses UMFPACK.
UMFPACK is a set of routines for solving unsymmetric sparse linear systems,

, using the Unsymmetric MultiFrontal method. It provides a
considerable increase in computational speed for these matrices.

ψ

ψ

Ax b=

New Features

2-17

lu Function. The lu function provides two new syntaxes for sparse matrices.
These new syntaxes use UMFPACK for factorization.

[L,U,P,Q] = lu(X)
[L,U,P,Q] = lu(X,thresh)

The syntaxes return a unit lower triangular matrix L, an upper triangular
matrix U, and permutation matrices P and Q, so that P*X*Q = L*U. The thresh
argument (default = 0.1, in the interval [0.0,1.0]) controls pivoting.

\ (backslash). Matrix left division (\) uses UMFPACK for square sparse
matrices that are not banded. You can control pivoting with the new spparms
parameter 'piv_tol' (default = 0.1, in the interval [0.0,1.0]).

Information about UMFPACK is available online at
http://www.cise.ufl.edu/research/sparse/umfpack/. The UMFPACK
Version 4.0 User Guide is available at
http://www.cise.ufl.edu/research/sparse/umfpack/v4.0/UserGuide.pdf.
Type help umfpack at the command line for summary copyright and licensing
information.

Matrix Math Performance Improvements for Triangular Matrices
The speed for solving linear systems AX = B where A is upper or lower
triangular, and B is an m-by-n matrix, has been improved through the use of
optimized Basic Linear Algebra Subroutines (BLAS). Optimized BLAS is
provided by Automatically Tuned Linear Algebra Software (ATLAS).

BLAS has also been used to improve certain matrix multiplication operations,
i.e., matrix*vector, vector*matrix, and rowvector*columnvector.

For the first time, ATLAS BLAS have been tuned to the Pentium 4 under both
Windows and Linux operating systems, resulting in improved speed for core
linear algebra functions.

By making better use of cache, the speed of matrix transposition has been
increased for all matrices, but particularly for matrices whose size is a power
of 2.

2 MATLAB 6.5 Release Notes

2-18

Summary of New Functions

Summary of Changed Functions

Function Purpose

dde23 Solve initial value problems for delay differential
equations (DDEs) with constant delays

ddeget Extract properties from the options structure created
with ddeset

ddeset Create/alter a DDE options structure that contains
solver integration properties

psi Psi (polygamma) function, i.e., the logarithmic derivative
of the gamma function

triplequad Numerically evaluate triple integral

Function Enhancement or Change

/ (slash)
\ (backslash)

Now use banded solvers for sparse, square, banded
matrices. See “Sparse, Square, Banded Matrix Left
Division” on page 2-16 for more information.

Now use UMFPACK for left and right division of square
sparse matrices that are not banded. See “Sparse Matrix
LU Factorization and Solve” on page 2-16 for more
information.

/ (slash)
\ (backslash)

The result of dividing a singular lower or upper triangular
matrix by any other matrix, using either left (\) or right (\)
division, may change. Previously, for singular square
matrices A for which rcond(A) = 0, the result was always a
matrix of Infs. This change is a result of the performance
improvements described above.

See “Mathematics Upgrade Issues” on page 2-51 for
examples.

New Features

2-19

bvp4c
bvpset

A new option 'SingularTerm' enables you to specify a
matrix as the singular term of singular BVPs. Set this
option to the constant matrix for equations of the form

corrcoef Provides three new syntaxes:

[R,P] = corrcoef(...) returns P, a matrix of p-values for
testing the hypothesis of no correlation.

[R,P,RLO,RUP] = corrcoef(...) returns matrices RLO and
RUP which contain lower and upper bounds for a 95%
confidence interval for each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...)
accepts parameter-value pairs that enable you to override
the default confidence interval, and specify how to treat rows
of X that contain NaNs.

deval Now also accepts output from dde23

gallery house A new syntax
[v,beta,s] = gallery('house',x,k)
returns the norm of x. You can use the new
argument k to control the sign of s.

leslie gallery('leslie',a,b) returns the n-by-n
Leslie matrix with average birth numbers
a(1:n) and survival rates b(1:n-1).

orthog gallery('orthog',n,k) adds a new type, k, of
matrix. k = 6 specifies a symmetric matrix
arising as a discrete cosine transform such
that Q(i,j) =
sqrt(2/n)*cos((i-1/2)*(j-1/2)*pi/n).

Function Enhancement or Change (Continued)

S

y ′ S y
x
--- f x y p, ,()+=

2 MATLAB 6.5 Release Notes

2-20

randsvd For large dimensions, a new argument,
method, enables you to specify an alternative
method that is much faster for large
dimensions even though it uses more flops.

legendre A new syntax legendre(n,X,'norm') computes the fully
normalized associated Lengendre functions .

lsqr A new syntax
[x,flag,relres,iter,resvec,lsvec] = lsqr(...)
returns, in the vector lsvec, estimates of the scaled normal
equations residual at each iteration.

lu Uses UMFPACK to improve speed for factorization of
sparse matrices, and to add two new syntaxes for sparse
matrices.

[L,U,P,Q] = lu(X)
[L,U,P,Q] = lu(X,thresh)

The new output Q is the column permutation matrix that is
used to reduce fill-in in the sparse case. P is the row
permutation matrix that is used for numerical stability. The
thresh argument controls pivoting. See “Sparse Matrix LU
Factorization and Solve” on page 2-16 for information about
UMFPACK.

qrdelete
qrinsert

Two new syntaxes for each function provide for the deletion
and insertion of rows, as well as columns, in a QR
factorization:

[Q1,R1] = qrdelete(Q,R,j,'col')
[Q1,R1] = qrdelete(Q,R,j,'row')

[Q1,R1] = qrinsert(Q,R,j,x,'col')
[Q1,R1] = qrinsert(Q,R,j,x,'row')

The original syntaxes qrdelete(Q,R,j) and
qrinsert(Q,R,j,x) default to 'col'.

Function Enhancement or Change (Continued)

Nn
m x()

New Features

2-21

Programming and Data Types Features
MATLAB 6.5 adds the following programming and data types features and
enhancements:

• “JIT Accelerator with MATLAB” on page 2-21

• “Regular Expression Support” on page 2-22

• “New Functions” on page 2-22

• “Cell to Matrix Conversion Functions” on page 2-23

• “New Warning and Error Handling Features” on page 2-24

• “Dynamic Field Names for Structures” on page 2-25

• “New Logical AND and OR Operators for Short-Circuiting” on page 2-26

• “New Output from ismember” on page 2-26

• “New true and false Functions” on page 2-27

• “Interrupting try-catch in a Loop” on page 2-27

• “Changes to copyfile and mkdir” on page 2-28

• “mfilename Returns Path and Class Information” on page 2-28

• “Support for the 64-Bit Integers int64 and uint64” on page 2-28

• “64-Bit File Handling” on page 2-29

• “MATLAB Audio Enhancements” on page 2-29

• “New MATLAB Timer Object” on page 2-30

JIT Accelerator with MATLAB
MATLAB 6.5 includes significant changes in the way MATLAB processes
M-file functions and scripts. These changes affect the performance of MATLAB

spparms Provides two new parameters for sparse matrix division.

'piv_tol' Pivot tolerance used by the UMFPACK
LU-based \ and /.

'bandden' Band density used by LAPACK-based \ and /
for banded matrices.

Function Enhancement or Change (Continued)

2 MATLAB 6.5 Release Notes

2-22

and can give you a substantial performance increase over earlier MATLAB
versions for many MATLAB applications.

Speeding up the execution of programs written in MATLAB is an ongoing
MathWorks endeavor that will be delivered over a number of product releases.
The documentation on “Performance Acceleration” explains how to best make
use of the JIT Accelerator, how to use the MATLAB Profiler to optimize your
performance, and includes several sample programs to illustrate how you can
make your M-file programs run faster.

Regular Expression Support
MATLAB now supports searching and replacing characters using regular
expressions. The following new functions support this capability. For more
information, see “Regular Expressions” in the MATLAB documentation.

New Functions
MATLAB 6.5 added new functions for working with error generation, regular
expressions, sorted sets, integer conversion, and for performing file operations.

Function Description

regexp Match regular expression.

regexpi Match regular expressions, ignoring case.

regexprep Replace string using regular expression.

Function Description

false False array

fileattrib Set or get attributes of file or directory

int64 Convert to signed 64-bit integer

isequalwithequalnans Determine if arrays are numerically equal,
treating NaNs as equal

issorted Determine if set elements are in sorted order

New Features

2-23

Cell to Matrix Conversion Functions
The following functions, previously belonging to the Neural Network Toolbox,
are now core MATLAB functions.

lasterror Return last error message and related
information

movefile Move file or directory

orderfields Order fields of a structure array

perl Call Perl script using appropriate operating
system executable

rethrow Reissue error

rmdir Remove directory

true True array

uint64 Convert to unsigned 64-bit integer

winopen Open file in appropriate application (Windows
only)

xmlread Parse XML document and return Document
Object Model node

xmlwrite Serialize XML Document Object Model node

xslt Transform XML document using XSLT engine

Function Description

cell2mat Combine a cell array of matrices into one matrix

mat2cell Break matrix up into a cell array of matrices

Function Description (Continued)

2 MATLAB 6.5 Release Notes

2-24

New Warning and Error Handling Features
These features include:

• “Formatted Error and Warning Strings”

• “Message Identifiers”

• “Warning Control Features”

Formatted Error and Warning Strings. Prior to MATLAB 6.5, the error and warning
functions only accepted a simple string as an input argument, as shown here
for error:

error('error_string')

In MATLAB 6.5, error and warning now accept a format string and one or
more parameters, using a syntax similar to the MATLAB sprintf function.
The syntax for error is shown here. Use the same syntax for warning:

error('format-string', arg1, arg2, ...)

Examples for using this syntax with error and warning are

error('File %s not found', filename);
warning('Ambiguous parameter name, "%s".', param)

Message Identifiers. A message identifier is a tag that you attach to an error or
warning statement that makes that error or warning uniquely recognizable by
MATLAB. You can use message identifiers with warnings to control any
selected subset of the warnings in your programs, or with error reporting to
better identify the source of an error.

Some examples of message identifiers are

MATLAB:divideByZero
Simulink:actionNotTaken
TechCorp:notFoundInPath

Message identifiers are used in warning control (see next section) and also to
enable the lasterr and lasterror functions to better identify the source of an
error.

See “Using Message Identifiers with lasterr” in the MATLAB documentation.

New Features

2-25

Warning Control Features. In this release, MATLAB gives you the ability to
control what happens when a warning is encountered during M-file program
execution. New options available in this release include

• Display selected warnings

• Ignore selected warnings

Depending on how you set up your warning controls, you can have these actions
affect all warnings in your code, specific warnings that you select, or just the
most recently invoked warning. See the section “Warning Control” in the
MATLAB documentation for more information on this feature.

Also read the section, “Warning Control Upgrade Issues” on page 2-65 in these
Release Notes to see how your existing programs might be affected by this
change.

Dynamic Field Names for Structures
You can now reference structures using field names that are computed at
run-time using the new dynamic field names feature in MATLAB. The
dot-parentheses syntax shown below tells MATLAB to interpret expression as
a dynamic field name:

structure_name.(expression)

This added capability now completes the following table by providing full
dynamic access to all data types.

See “Dynamic Field Names” in the MATLAB documentation for more
information on this feature.

Data Type Static (compile time) Dynamic (run-time)

Matrix A(2,3) A(m,n)

Cell Array C{4} C{k*2}

Structure S.name S.(field)

2 MATLAB 6.5 Release Notes

2-26

getfield and setfield Deprecated. Although the following two expressions are
functionally equivalent, the first (using dynamic field names) offers improved
execution speed and code readability. Compare the following for readability:

S(m,n).(fieldname)(k) = value

S = setfield(S,{m,n},fieldname,{k},value)

Since dynamic field names improve on the getfield and setfield functions,
these two functions will eventually be removed from the MATLAB language.
As of this release, getfield and setfield generate a warning message
encouraging you to use dynamic field names instead.

New Logical AND and OR Operators for Short-Circuiting
Prior to this release, the MATLAB & (AND) and | (OR) operators served two
purposes: that of a logical operator and also an array operator. These two roles
at times conflicted, resulting in technically correct, yet possibly confusing
evaluations.

MATLAB 6.5 introduces two additional AND and OR operators: && and ||. Use
these new operators to evaluate a compound logical expression, especially
when short-circuiting is required. Use the & and | operators for element-wise
operations on arrays.

See “Short-circuit Operators” in the MATLAB documentation for a discussion
on short-circuiting with && and ||.

New Output from ismember
The ismember function now returns an optional, second output indicating the
indices at which members of a set are located. The syntax is

[tf, loc] = ismember(A,S,...)

When you use this syntax, ismember returns index vector loc containing the
highest index in S for each element in A that is a member of S. For those
elements of A that do not occur in S, ismember returns 0.

New Features

2-27

For example,

a = reshape(1:5, [5 1])
set = [5 2 4 2 8 10 12 2 16 18 20 3];
[tf, index] = ismember(a, set);

index
index =
 0
 8
 12
 3
 1

New true and false Functions
MATLAB has two new functions for logical operations: true and false. true is
shorthand for logical(1) and false for logical(0). Both functions accept
input arguments that enable you to build n-dimensional arrays of logical 1 or 0.

This example builds a 3-by-5 array of type logical:

a = true(3,5)
a =
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1

true(n) is equivalent to logical(ones(n)), however true(n) is easier to use
and will improve the readability of your program. Type help true or help
false for more information.

Interrupting try-catch in a Loop
try-catch statements no longer catch Ctl+C interrupts. Prior to this release,
pressing Ctl+C while a try block was executing would result in a jump to the
corresponding catch block. In MATLAB 6.5, a Ctl+C aborts execution and
returns control to the Command Window, regardless of what code is executing.

2 MATLAB 6.5 Release Notes

2-28

For example, in MATLAB 6.5, you can use Ctl+C to interrupt the loop shown
here. You could not interrupt this loop in earlier MATLAB versions:

for k=1:100
 try
 pause(1);
 catch
 end
end

Changes to copyfile and mkdir
The copyfile and mkdir functions have changed since the previous release.

Changes to copyfile. The writable argument has been superseded by the f
argument, although writable is still allowed for this release. The function now
also copies directories. It replaces the destination files or directories of the
same name as the source files or directories without a warning. (In previous
versions, there was a warning in that event.) If the destination files or
directories are read-only and the f (or writable) argument is not used,
copyfile will fail.

Change to mkdir Return Status. mkdir no longer returns 2 if the directory already
exists, but instead displays a warning. It also has an enhanced return format.

mfilename Returns Path and Class Information
You can now request more information from the mfilename function:

• mfilename('fullpath') — Returns the full path and name of the M-file in
which the call occurs, not including the filename extension.

• mfilename('class') — In a method, returns the class of the method, not
including the leading @ sign. If called from a non-method, it yields the empty
string.

Support for the 64-Bit Integers int64 and uint64
MATLAB now supports signed and unsigned 64-bit integers. Use the int64
and uint64 functions to convert a number to a signed or unsigned 64-bit
integer.

New Features

2-29

64-Bit File Handling
MATLAB low-level file handling functions (fopen, fseek, ftell, etc.) now
support 64-bit file offsets. This enables you to perform low-level I/O operations
on files greater than 2 GB in size. (The limit in previous versions of MATLAB
was 2^31-1 bytes, or 2 GB.)

64-bit support is available on the following platforms:

• Windows

• Solaris

• Alpha

• HPUX 11.0, 9000/785

64-bit support is not available on the following platforms, due to limitations
imposed by their respective operating systems:

• SGI

• Linux

• HPUX 10.20, 9000/735

• HPUX 11.0, 9000/780

On the IBM-AIX platform, 64-bit file I/O is supported for reading only. You can
write only up to 2 GB.

MATLAB Audio Enhancements

New audiodevinfo Function. On Windows 32-bit machines, audiodevinfo returns
information about installed audio devices.

Enhancements to audiorecorder and audioplayer. audioplayer and audiorecorder
can now take the audio device ID as input. You can obtain the device ID from
audiodevinfo.

audioplayer can now take an audiorecorder as an input.

Support for 24-bit Recording and Playback. On 32-bit Windows machines with an
installed 24-bit audio device, audiorecorder and audioplayer now support
24-bit recording and playback, respectively.

2 MATLAB 6.5 Release Notes

2-30

Improvement to wavread and wavwrite. wavread and wavwrite now support
reading and writing 24- and 32-bit .wav files.

Workspace Browser Support. Right-clicking on an audio object in the Workspace
Browser now displays a context menu with player/recorder controls.

New MATLAB Timer Object
MATLAB includes a timer object that you can use to schedule the execution of
MATLAB commands. To use a timer, you must perform these steps:

1 Create a timer object by calling the timer function.

2 Specify which MATLAB commands you want executed and when you want
them executed by setting timer object properties. (You can also set timer
object properties when you create them, in Step 1.)

3 Start the timer by calling the start or startat functions.

Programming Tips Documentation
A number of questions come up repeatedly in our external customer newsgroup
and our technical support Web site. Some of these questions arise when
MATLAB users are unable to find the information they are looking for in the
documentation. The “MATLAB Programming Tips” documentation is a new
feature in MATLAB 6.5, designed to make it easier to find help on a wide range
of topics. Many of the questions addressed by the tips documentation were
taken from discussions in the MathWorks newsgroup and from the technical
support site.

“MATLAB Programming Tips” is a chapter in the MATLAB “Programming and
Data Types” documentation. It is a categorized compilation of tips, covering
topics such as Debugging, Input/Output, Managing Memory, Optimizing for
Speed, etc. Each item is relatively brief to help you to browse through them and
find information that will be useful. Many of the tips include a link into the
MATLAB documentation to give you more complete coverage of the topic.

New Features

2-31

Graphics Features
MATLAB 6.5 adds the following graphics features and enhancements.

New Text Properties – Control Text Background
Text objects have the following new properties.

Colormap Editor – Modify Colormaps Interactively
The colormap editor is a tool that enables you to modify the colormap of the
current figure. See the colormapeditor function description for more
information and an example.

Redesigned Property Editor
The Handle Graphics Property Editor and associated help have been
redesigned.

Selecting a Printer From the MATLAB Command Line
In earlier versions of MATLAB, you could select a nondefault printer for
graphics from the MATLAB command line on UNIX systems only. In MATLAB
6.5, you can do this on Windows systems as well. Specify the printer using the
-P switch in the print command.

For example, to print Figure No. 3 to a printer called Calliope, type

print -f3 -PCalliope

Property Purpose

BackgroundColor Color of text extent rectangle

EdgeColor Color of the rectangle edge

LineStyle Style of the rectangle edge line

LineWidth Width of the rectangle edge line

Margin Increase the size of the rectangle by adding a
margin to the text extent

2 MATLAB 6.5 Release Notes

2-32

If the printer name has spaces in it, put quotes around the -P option, as shown
here.

print -f3 '-Pmy local printer'

Using a Network Print Server
On Windows NT, Windows 2000, and Windows XP systems, you can print to a
network print server using the form shown here for a printer named trinity.

print -P\\PRINTERS\trinity

This form is not supported on Windows 98 or Windows ME. On these platforms,
you can print to a network printer only if you install a network printer using
the Add Printer dialogs. When installed in this manner, these network
printers work without the use of the \\server\printer notation, as they look
the same as local printers.

External Interfaces/API Features
MATLAB 6.5 adds the following external interface and API features and
enhancements:

• “New MX and MEX Functions” on page 2-32

• “New COM Client Support Features” on page 2-34

New MX and MEX Functions
There are a number of new logical mx functions provided as part of changing
logical from an attribute to a MATLAB class, several additional mx functions,
and two new mex error handling functions.

New Logical Functions. This release introduces seven new C mx functions to use
with logicals.

Function Description

mxCreateLogicalArray Create N-dimensional, logical
mxArray initialized to false

mxCreateLogicalMatrix Create two-dimensional, logical
mxArray initialized to false

New Features

2-33

Obsolete Logical Functions. The following two functions are now obsolete. Support
for these functions will be removed in a future release.

New mx Functions in C API. MATLAB 6.5 also introduces these new C mx
functions.

Note mxCreateDoubleScalar replaces mxCreateScalarDouble, although the
latter function is still supported at this time.

mxCreateLogicalScalar Create scalar, logical mxArray
initialized to false

mxCreateSparseLogicalMatrix Create unpopulated, two-dimensional,
sparse, logical mxArray

mxGetLogicals Get pointer to logical array data

mxIsLogicalScalar True if scalar mxArray of class
mxLOGICAL

mxIsLogicalScalarTrue True if scalar mxArray of class
mxLOGICAL is true

Function Description

mxClearLogical Convert mxArray to numeric type

mxSetLogical Convert mxArray to logical type

Function Description

mxGetChars Get pointer to character array data

mxCreateDoubleScalar Create scalar, double-precision array
initialized to the specified value

Function Description (Continued)

2 MATLAB 6.5 Release Notes

2-34

New mex Functions for Error Handling. There are two new C and Fortran MEX
functions that enable you to specify a message identifier and message string
when reporting an error or warning. These functions also accept formatting
conversion characters, such as those used with the MATLAB sprintf function,
in the error or warning message string.

New COM Client Support Features
In an effort to provide a consistent interface to object-oriented technologies,
MATLAB 6.5 introduces several changes that affect the way you interact with
Component Object Model (COM) controls and servers through MATLAB.

Key benefits of this change are

• Robust memory management — Objects and interfaces are destroyed
automatically when the variable that represents the object or interface is
either reassigned or goes out of scope.

• Flexibility in event handling — Register and unregister a control’s events
with callback or event handler routines at any time after the control has been
created.

• Custom properties — You can attach your own properties to a control and
store any kind of data in the control.

• A graphical user interface for viewing and modifying COM properties.

• Multiple arguments with the set function.

• More useful information on methods returned by invoke.

• More detail in error messages.

See “Client Support for COM” in the MATLAB documentation for more
information on these features. You may also want to read through the
“External Interfaces/API Upgrade Issues” on page 2-76 to find out how these
changes may affect your existing programs.

Function Description

mexErrMsgIdAndTxt Issue error message with identifier and return
to MATLAB prompt

mexWarnMsgIdAndTxt Issue warning message with identifier

New Features

2-35

COM Demo. MATLAB includes three demos showing how to use the COM client
interface. To run any of the demos, click on the Demos tab in the MATLAB
Help Browser. Then click to expand the folder called Automation Client
Interface (COM).

New MATLAB Functions for COM. There are a number of new functions available
for the COM interface.

MATLAB Functions New to COM. You can now use these MATLAB functions in the
COM environment.

Function Description

addproperty Add custom property to COM object

deleteproperty Remove custom property from COM object

eventlisteners Return a list of events attached to listeners

events Return a list of events that the control can trigger

isevent Determine if an item is an event of a COM control

ismethod Determine if an item is a method of a COM object

isprop Determine if an item is a property of a COM
object

registerevent Register an event handler with a control’s event

unregisterallevents Unregister all events for a control

unregisterevent Unregister an event handler with a control’s
event

Function Description

fieldnames Return property names of a COM object

inspect Display graphical interface to list and modify property
values

2 MATLAB 6.5 Release Notes

2-36

Specifying Property Names. You may abbreviate the names of properties, as long
as you include enough letters in the name to make it unambiguous. Also,
property names are not case-sensitive. For example, to get the value of the
OrganizationName property from a COM server running an Excel application,
you can use

get(h, 'org')
ans =
 The MathWorks, Inc.

Get and Set on Multiple Objects. You can use the get and set functions on more
than one object at a time by putting the object handles into a vector and then
operating on the vector. See “Get and Set on Multiple Objects” in the MATLAB
documentation.

Enumerated Values for COM Properties. When setting the value for a COM property
in MATLAB, you can now use an enumerated string in place of a numeric
value. An enumerated string, such as xlUnicodeText, is much easier to
remember than its equivalent numeric value, and thus makes it unnecessary
to spend time looking up valid settings for a property.

To list all possible enumerated values for a property of object h, use

set(handle, 'propertyname')

To set a property to the value represented by an enumerated string, use this
syntax. The enumstring argument can be abbreviated, as long as you use
enough letters to make it unambiguous:

set(handle, 'propertyname', 'enumstring')

To get the current enumerated value of a property, use

get(handle, 'propertyname')

See “Using Enumerated Values for Properties” in the MATLAB documentation
for more information.

methods List all methods for the control or server

methodsview Display graphical interface to list method information

Function Description (Continued)

New Features

2-37

Custom Properties. You can attach your own properties to a control using the
addproperty function. The syntax shown here creates a custom property for
control, h:

addproperty(handle, 'propertyname')

This example creates the mwsamp control, adds a new property called Position
to it, and assigns the value [200 120] to that property:

h = actxcontrol('mwsamp.mwsampctrl.2', [200 120 200 200]);
addproperty(h, 'Position');
set(h, 'Position', [200 120]);

To remove custom properties from a control, use deleteproperty with the
following syntax:

deleteproperty(h, 'propertyname')

See “Custom Properties” in the MATLAB documentation for more information.

New Event Handling Functions. With earlier versions of MATLAB, you could
register events for a control only at the time the control was created. In
MATLAB 6.5, you can register and unregister events at any time using the
registerevent, unregisterevent, and unregisterallevents functions.

You can also list all events that a control can respond to, or just those events
that are currently registered, using the events and eventlisteners functions,
respectively. The events function supersedes the COM send function.

See “COM Control Events” in the MATLAB documentation for more
information on event handling.

GUI Interface to Get and Set Properties. Use the new inspect function to see a list of
all properties belonging to a COM object or interface. Create an Excel server
object and invoke inspect to bring up the Property Inspector window shown
below:

h = actxserver('excel.application');
inspect(h)

2 MATLAB 6.5 Release Notes

2-38

To change the value of one of the properties, click on the property name at the
left and then type in the new value in the field at the right.

See “Using the Property Inspector” in the MATLAB documentation.

set Accepts Multiple Arguments. You can now set more than one property value
with one set command. The syntax is

set(h, property1, newvalue1, property2, newvalue2, ...);

Each property argument must be followed by a newvalue argument. The
example shown here changes the Label and Radius for an mwsamp control:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200]);
get(h)
ans =
 Label: 'Label'
 Radius: 20

set(h, 'label', 'Hello', 'radius', 35);

New Features

2-39

get(h)
ans =
 Label: 'Hello'
 Radius: 35

Returning More Than One Output Argument. A MATLAB client can now return more
than one output argument from COM server applications. If you know that a
server function supports multiple outputs, you can return any or all of those
outputs to the MATLAB client.

With previous versions of MATLAB, you could only get back a single return
value (shown here as ret) from a function call to the server, even for those
functions that could return more than one output value:

ret = functionname(in1, in2, ...);

In MATLAB 6.5, you can specify additional output arguments (shown here as
out1 out2 ...) in a function call, enabling the client access to all values
returned by the function:

[ret out1 out2 ...] = functionname(in1, in2, ...);

If there are multiple output arguments, the return value is always the first
argument on the left hand side (lhs).

MATLAB makes use of the pass by reference capabilities in COM to implement
this feature. Note that pass by reference is a COM feature. It is not available
in MATLAB at this time.

Argument Types Listed By Invoke. The invoke function now lists data types for
input and output arguments. The function m1 defined in an Interface Definition
Language (IDL) file is shown here:

m1([in,out] BSTR* strInOut, [out] short* shortOut, [in] long
longIn, [out,retval] double* doubleRet);

MATLAB 6.1 invoke lists the function as

m1 = double m1(Variant(Pointer), Variant(Pointer), Int)

while MATLAB 6.5 invoke lists it as

m1 = [double, string, int16] m1(handle, string, int32)

2 MATLAB 6.5 Release Notes

2-40

More Detail in Error Messages. MATLAB now returns more detailed information
when a COM error is generated. This includes the source and description of the
error, along with the location of help resources provided to assist in resolving
the error:

h = actxserver('excel.application');
Repeat(h)
??? Invoke Error, Dispatch Exception:
Source: Microsoft Excel
Description: Repeat method of Application class failed
Help File: D:\Applications\MSOffice\Office\1033\xlmain9.chm
Help Context ID: 0.

Creating Graphical User Interfaces (GUIDE) Features
MATLAB 6.5 adds the following features and enhancements to GUIDE:

• New structure for the generated M-file makes it easier to understand and
program

• New GUIDE Quick Start dialog and GUI templates. When you first open
GUIDE, the GUIDE Quick Start dialog box provides access to new GUI
templates—simple examples of GUIs that you can modify for your own
purposes.

• Tab Order Editor enables you to change the order in which GUI components
are selected when a user clicks the Tab button.

• Changes to component tags automatically update callbacks and M-file code

• Export option in the File menu enables you to export a GUI to a single M-file
that does not require a FIG-file.

• MATLAB Editor icon on the toolbar provides easier access to the editor.

Changes to the M-file Generated by GUIDE
The associated M-file generated by GUIDE has the following differences for
Release 13:

• Most of the GUI initialization is performed in a separate function, which you
do not need to edit.

• The GUI M-file contains an opening function, where you can add code to
create data or perform other tasks before the GUI becomes visible to the
user.

New Features

2-41

• The GUI M-file contains an output function for returning variables to the
command line.

• A new calling syntax simplifies passing user defined arguments to the GUI
M-file.

• You can pass figure property name/value pairs as arguments when creating
the GUI.

• Generated callback function stubs no longer include a varargin argument.
If you want to add more arguments to a callback subfunction, you must add
the arguments to the function definition.

The following sections describe changes to the associated M-file in greater
detail.

New Calling Syntax for GUI M-File. You can call the GUI M-file with the following
syntax:

my_gui
my_gui('PropertyName', PropertyValue,...)
my_gui(UserArgs,...)
my_gui('PropertyName',PropertyValue,...,UserArgs,...)

• my_gui without arguments starts the GUI.

• Calling my_gui('Property', Value,...), where 'Property' is a valid
figure property, creates a new my_gui using the given property value pairs.

• Calling my_gui('My_function', hObject, eventdata, handles) calls the
subfunction my_function in the GUI M-file with the given input arguments.

Opening Function Code. The generated GUI M-file now includes a subfunction for
any initialization code you want to execute. If you call the GUI with input
arguments, they are passed to the opening function. The GUI M-file calls the
opening function with the following arguments:

function myGUI_OpeningFcn(hObject, eventdata, handles, varargin)

• hObject—handle to figure

• eventdata—to be defined in a future version of MATLAB

• handles—structure with handles and user data (see guidata)

• varargin— command line arguments to my_gui (see varargin)

2 MATLAB 6.5 Release Notes

2-42

Output Function Code. The GUI M-file now includes a subfunction for passing
output arguments to the command line. The GUI M-file calls the output
function with the following arguments:

function varargout = myGUI_OutputFcn(hObject, eventdata, handles)

• hObject—handle to figure

• eventdata—to be defined in a future version of MATLAB

• handles—structure with handles and user data (see guidata)

• varargin—unrecognized property name/value pairs from the command line

GUIDE Quick Start Dialog and Templates
GUIDE now provides four templates that make it easier to construct GUIs. The
templates are simple examples of GUIs that you can modify for your purposes.
You can access the templates from the new GUIDE Quick Start dialog that
appears when you open GUIDE, or when you select New from the file menu. It
is often easier to build a GUI from an existing template rather than starting
with a blank GUI.

openfig Accepts Property Name/Value Pair—Returns User Args
The openfig function enables you to specify figure property name/value pairs
that are applied to the figure before it is displayed. See the openfig reference
page for more information.

uiputfile and uigetfile Return Filter Index
The uigetfile and uiputfile functions can now optionally return an index
value that enables you to determine which filter was selected by the user. See
the uigetfile and uiputfile reference pages for more information.

uigetdir
The new uigetdir function displays a dialog box in which the user can select a
directory, and returns the directory name as a string.

Major Bug Fixes

2-43

Major Bug Fixes
MATLAB 6.5 includes several bug fixes made since the last MATLAB release.
This section describes the particularly important Version 6.5 bug fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

If you are upgrading from a release earlier than Release 12.1, then you should
also see “Major Bug Fixes” on page 3-18.

2 MATLAB 6.5 Release Notes

2-44

Platform Limitations
The MATLAB functionality described in these Release Notes and in the
MATLAB documentation applies to MATLAB 6.5, with the exception of the
limitations listed below for the HP and IBM platform.

This discussion of new MATLAB platform limitations is organized into the
following categories:

• “Patch Required for HP-UX 11.0” on page 2-44

• “Development Environment Limitations” on page 2-44

• “Mathematics Limitations” on page 2-46

• “Graphics Limitations” on page 2-47

• “Creating Graphical User Interfaces (GUIDE) Limitations” on page 2-47

Another platform limitation involves the use BLAS on certain processors. See
“You May Need to Overwrite the MATLAB Default Choice of BLAS” on
page 2-47 for details.

Patch Required for HP-UX 11.0
To run MATLAB on HP-UX 11.0, you must install a patch available from
Hewlett-Packard. To get the patch, go to www.itrc.hp.com, the IT Resource
Center page. The patch is available to registered customers from the individual
patches link. The patch name is below.

PHSS_21959 1.0 X/Motif 32 bit
Runtime 2000 Periodic Patch

Development Environment Limitations
The MATLAB 6.5 development environment features have the platform
limitations described below. These include limitations that have existed since
MATLAB 6.0.

Platform Limitations

2-45

The MATLAB desktop and most of the development environment tools are not
available on the HP-UX and IBM platform. Following are the specific
limitations for each tool and available alternatives.

Feature Limitation and Alternatives

Desktop Not supported. Instead, the MATLAB prompt appears in an
X window. Use function alternatives for various tools.

Array
Editor

Not supported. Instead, view and edit variables at the
command line.

Command
History

Not supported. To recall previous lines, use the up arrow
key, or use the diary function or the logfile startup
option.

Current
Directory
browser

Not supported. Use function alternatives documented for
the Current Directory browser, including cd, delete, ls,
and mkdir.

Demos Demos for non-Java platforms run the way they did in
Release 12.1. You do not access them from the Help
browser, but rather by using the demo function.

Editor/
Debugger

Not supported. For editing M-files, use the edit function,
and another text editor, such as Emacs—see the edit
reference page to specify the other text editor. To debug
M-files, use MATLAB debugging functions.

Help
browser

Not supported. Help displays in your default browser. The
Index and Search features are not available. You get a
broken link message from your browser if you try to access
documentation that you do not have installed.

HDF
Import Tool

Not supported. Use function alternatives documented in
Using the HDF Import Tool.

Import
Wizard

Not supported. Use import function equivalents for the
various features.

2 MATLAB 6.5 Release Notes

2-46

Mathematics Limitations
The MATLAB 6.5 mathematics features have the platform limitation described
below.

Basic Fitting Interface
The Basic Fitting interface is not supported. Instead, use curve fitting
functions such as polyfit and spline. See also “Data Analysis and Statistics”
in the MATLAB documentation for more information.

Launch Pad Not supported. Access documentation and demos using
functions, such as help and demo.

Preferences Not supported. Set location of help files using docopt.

Profiler The new desktop Profiler is not supported. The Version 6.1
profile and profreport functions are supported.

Set Path
dialog box

Not supported. Use the path, addpath, and rmpath
functions instead.

Source
Control
menu items

Not supported. Use the checkin, checkout, cmopts, and
undocheckout functions on UNIX platforms or the verctrl
function on PC platforms instead.

Workspace
browser

Not supported. Use who, whos, save, load, and clear
functions instead.

Feature Limitation and Alternatives (Continued)

Platform Limitations

2-47

Graphics Limitations
The MATLAB 6.5 graphics features have the platform limitations described
below.

Creating Graphical User Interfaces (GUIDE)
Limitations
The MATLAB 6.5 GUIDE-related features have the platform limitations
described below.

GUIDE is not supported on the following platforms:

• IBM_RS

• HPUX

• HP700

You May Need to Overwrite the MATLAB Default
Choice of BLAS
On the PC, under both Linux and Windows operating systems, MATLAB
determines at startup time what processor your computer has, for example
Genuine Intel Pentium II, Pentium III, or AMD Athlon. MATLAB then
automatically selects the most appropriate BLAS for your processor. The same
is true on the SUN, where MATLAB distinguishes between UltraSPARCs and
non-Ultra machines.

Feature Limitation and Alternatives

Data
Statistics

Not supported.

Printing Uses the Release 11 Page Setup, Print Setup, and Print
dialog boxes. For information about these interfaces, see
“Printing MATLAB Graphics” in the online MATLAB
documentation.

Property
Editor

Not supported. Similar graphical user interfaces provide
access to figure, line and text objects. Use the set and get
functions to modify Handle Graphics object properties.

2 MATLAB 6.5 Release Notes

2-48

However, on the remaining platforms you get the default BLAS, which is
usually targeted for a reasonably modern or common processor:

• ALPHA 21264

• HP700 PA-RISC1.1

• HPUX PA-RISC2.0

• IBM_RS Power3

• SGI R12000

If you have reason to believe that your processor is closer to another of the
flavors of BLAS distributed with MATLAB, for example 21164 on the ALPHA
or PA-RISC2.0 on the HP700, you might want to override the default choice of
BLAS. Look in your <MATLAB>/bin/$ARCH directory for libraries beginning with
atlas_ to see your options.

Overriding the Default
The way to override the default choice is to set the environment variable
BLAS_VERSION before invoking MATLAB. For example (in csh):

setenv BLAS_VERSION atlas_21164.so
setenv LAPACK_VERBOSITY 1
matlab

The environment variable LAPACK_VERBOSITY simply confirms that your choice
of BLAS is being loaded once you start up MATLAB.

Restoring the Default
If you would like to return to using the default provided by MATLAB, you may
use the command (in csh)

unsetenv BLAS_VERSION

Upgrading from an Earlier Release

2-49

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from MATLAB
6.1 to Version 6.5. This discussion of new MATLAB upgrade issues is organized
into the following categories:

• “Development Environment Upgrade Issues” on page 2-49

• “Mathematics Upgrade Issues” on page 2-51

• “Programming and Data Types Upgrade Issues” on page 2-52

• “Graphics Upgrade Issues” on page 2-75

• “External Interfaces/API Upgrade Issues” on page 2-76

• “Creating Graphical User Interfaces (GUIDE) Upgrade Issues” on page 2-85

If you are upgrading from a release earlier than Release 12.1, then you should
see “Upgrading from an Earlier Release” on page 3-23.

Development Environment Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of development environment features, are discussed below.

Toolbox Path Caching Now On By Default
Toolbox path caching is now on by default—see “Startup” on page 2-3.

Release 13 Prerelease users might not see the toolbox path caching option on
by default. To turn it on, select File -> Preferences -> General, set the Enable
toolbox path cache check box, and click OK. The next time you start
MATLAB, it will create the cache file, and startups after that will be faster.

Changes to ver Function
The ver function header now displays more detailed operating system output
and the version, if any, of the Java Virtual Machine MATLAB uses. The hostid
is no longer in the ver header.

The ver header displays when you run ver with an argument, for example,
ver('simulink'). The header is not displayed when ver returns the results to
a structure, for example, simver = ver('simulink').

2 MATLAB 6.5 Release Notes

2-50

The ver output no longer includes a date column. The output is now ordered
with MATLAB first, Simulink second, if installed, and then all other installed
products in alphabetical order.

Migration of Files Used by Desktop Tools
Most files associated with desktop tools are maintained when you upgrade
from Release 12.1 to Release 13. Specifically, preferences, the Command
History, Help favorites, and current directory entries in the desktop toolbar
and Current Directory browser lists are maintained. However, there may be
some invalid current directory and favorites entries if the locations of Release
13 files are different from the locations of Release 12 files.

pathdef.m. If you want Release 13 to use your existing pathdef.m file, save it to
another location outside of $matlabroot before installing Release 13, and then
after installing, copy it back.

Editor/Debugger

Cannot Save in Debug Mode. You cannot save changes to an M-file while in debug
mode. First quit debug mode and then save the file.

Subfunctions Listed Alphabetically. When you click the function button on the
toolbar, the subfunctions are listed alphabetically. Previously they were listed
in the order that they appeared in the M-file.

Use Delete Instead of Clear. The Edit -> Clear menu item was removed. Use Edit
-> Delete instead.

Discontinued Form of edit. The edit function no longer supports the forms
edit fun1 in fun2 or edit fun(a, b, c).

Running Playshow Demos from the Command Line
To run playshow demos from the command line, you now need to type playshow
followed by the demo name. In previous releases, you only needed to type the
playshow demo name to run it.

For example, if you type quake, the demo does not run. View the H1 line for
quake.m, that is, the first comment line. It begins with two comment symbols
(%%), indicating that quake is a playshow demo. Therefore, type
playshow quake to run the demo.

Upgrading from an Earlier Release

2-51

Mathematics Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of mathematics features, are discussed below.

Singular Triangular Matrix Division
The result of dividing a singular lower or upper triangular matrix by any other
matrix, using either left (\) or right (/) division may change. Previously, for
singular square matrices A for which rcond(A) = 0, the result was always a
matrix of Infs.

This change is a result of performance improvements described in
“Mathematics Features” on page 2-15.

Example 1.

In MATLAB Version 6.5,

A = [1 2 3;0 4 5;0 0 0];
b = [1;2;3];
A\b
Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 0.000000e+000.

ans =
NaN

 -Inf
 Inf

Previously, the result was

[Inf
Inf
Inf]

2 MATLAB 6.5 Release Notes

2-52

Example 2.

In MATLAB 6.5, a zero matrix is treated as a singular triangular matrix.

[0 0;0 0] \ [0 0]'
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 0.000000e+000.

ans =
NaN
NaN

Previously the result was

[Inf
Inf]

Programming and Data Types Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of programming and data types features, are discussed below. MATLAB 6.5
introduces important changes to the inner structure of MATLAB that may
affect existing programs. These changes are

• “Maximum Name Length Changed for Variables, Functions, Files” on
page 2-53

• “The logical Attribute Is Now a Class” on page 2-55

• “Changes to Definition of “Truth”” on page 2-59

• “The sparse Class Is Now an Attribute” on page 2-61

• “Logical Indexing and find” on page 2-65

• “Warning Control Upgrade Issues” on page 2-65

• “Formatted Error and Warning Strings” on page 2-68

• “getfield and setfield Superseded” on page 2-68

• “New Behavior in break” on page 2-68

• “isequal and Structure Field Creation Order” on page 2-68

• “Set Operations on Cell Arrays of Strings” on page 2-68

• “Using mat2cell on an Empty Array” on page 2-69

• “Concatenating with Empty Arrays” on page 2-69

• “Function Names Redefined As Variable Names” on page 2-70

Upgrading from an Earlier Release

2-53

• “Specifying More Outputs Than a Function Defines” on page 2-71

• “Consistent Handling of Subscripting Errors” on page 2-72

• “Consistent Handling of Logical Errors” on page 2-72

• “Operations That Are Now Considered Invalid” on page 2-73

Maximum Name Length Changed for Variables, Functions, Files
Prior to this release, the length of MATLAB identifiers (variable names,
function and subfunction names, structure fieldnames, M-file names, MEX-file
names, and MDL-file names) was restricted to 31 characters. Names using
more than 31 characters were either truncated by MATLAB or caused a
warning or error to be generated.

In MATLAB 6.5, any of these names can be up to 63 characters long.

A new function, namelengthmax, returns the maximum length for MATLAB
identifiers.

namelengthmax
ans =
 63

If you have MATLAB programs that hard-code the maximum identifier length
as 31, you should replace these hard-coded limits with a call to namelengthmax.

If you use identifiers that exceed 63 characters, MATLAB issues a warning and
truncates any characters beyond the 63rd.

Characters Beyond 31 Are No Longer Ignored. In previous versions of MATLAB, if
you had two or more long identifiers in which the first 31 characters were
identical, MATLAB ignored any characters beyond the thirty first and thus
recognized only one of the identifiers. For example, these two Stateflow
filenames

stateflow_modelname_with_40_characters_1.mdl
stateflow_modelname_with_40_characters_2.mdl

both appeared to MATLAB 6.1 as shown below, and MATLAB recognized only
one of the files:

stateflow_modelname_with_40_cha.mdl

2 MATLAB 6.5 Release Notes

2-54

In MATLAB 6.5, with the maximum MDL-file name length increased to 63,
MATLAB recognizes both files. You should be aware of this change, as it could
possibly lead to unexpected behavior.

Warning for Identifiers Longer Than 31. In MATLAB 6.5, if you use an identifier
that exceeds the previous limit of 31 characters, MATLAB can optionally
generate a warning of the form:

<identifier> exceeds MATLAB's previous maximum name length limit
of 31 characters.

This warning is disabled by default. You can enable it by typing

warning on MATLAB:usinglongnames

Note Unlike most MATLAB warnings, you cannot enable this warning with
the commands, warning on or warning on all. You must use the command
shown above.

Warning for Identifiers Longer Than namelengthmax. If you specify an identifier that
exceeds the new character limit, MATLAB generates the following warning:

<identifier> exceeds MATLAB's maximum name length of
<namelengthmax> characters and has been truncated to
<truncated_identifier>

This warning is enabled by default. You can disable it by typing the following
command. However, we strongly encourage you to leave it enabled:

warning off MATLAB:namelengthmaxexceeded

MATLAB Toolbox Functions Updated. MATLAB toolbox functions, such as
isvarname, have been updated in MATLAB 6.5 to make use of the
namelengthmax function, and thus return the correct values.

Effect On P-Code and MEX-files. You should recompile the following files:

• Any P-Code files that contain identifiers longer than 31 characters.

• Any MEX-files that use the constant, mxMAXNAME.

Upgrading from an Earlier Release

2-55

The logical Attribute Is Now a Class
In previous versions of MATLAB, logical was an attribute of any numeric
data type. This is illustrated in the following example (executed in MATLAB
6.1), where b = a > 10 produces a double array with a logical attribute:

a = magic(4);
b = a > 10;

whos b
 Name Size Bytes Class

 b 4x4 128 double array (logical)

Grand total is 16 elements using 128 bytes

In MATLAB 6.5, logical is a first class data type and MATLAB class. The
class hierarchy diagram below shows logical to be a class, equivalent to other
first class types like character and cell arrays.

 ARRAY

char NUMERIC cell structure

double

 int8, uint8,
int16, uint16,
int32, uint32,
int64,uint64

user classes java classes

function
handle

single

[full or sparse]

logical

2 MATLAB 6.5 Release Notes

2-56

The same example, executed in MATLAB 6.5, produces a result of class
logical array:

a = magic(4);
b = a > 10;

whos b
 Name Size Bytes Class

 b 4x4 16 logical array

Grand total is 16 elements using 16 bytes

Note Logical arrays in MATLAB 6.5 also require less storage space. In the
example above, it took 128 bytes to store the array in MATLAB 6.1, and only
16 bytes in Version 6.5.

Effect on Related Functions. The table below compares the results obtained from a
number of functions that operate on logical types. The variable a in the table
is derived as follows:

a = (magic(4) > 10);

Command MATLAB 6.1 Result MATLAB 6.5 Result

whos a double array (logical) logical array

class(a) double logical

islogical(a) 1 1

isnumeric(a) 1 0

isa(a,'double') 1 0

isa(a,'logical') 0 1

double(a) double array (logical) double array

Upgrading from an Earlier Release

2-57

Valid logical Values. logicals can only have the values 0 and 1. When you
convert real finite values other than 0 or 1 to logical, MATLAB gives them a
logical 1 value and issues a warning message:

x = logical(5)
Warning: Values other than 0 or 1 converted to logical 1
x =
 1

Behavior of islogical is Unchanged. Note in the table above that islogical
continues to return 1 for a logical array, as it did in previous releases for
arrays with a logical attribute.

Array Manipulation. All generic array manipulation functions (e.g., subscripting,
reference, assignment, concatenation, size, length, numel, ndims, permute,
diag, etc.) work as they do in MATLAB 6.0, subject to the behaviors described
in this section.

Boolean Functions. All Boolean functions (e.g., and, or, not, xor, any, all) work
as they do in MATLAB 6.0, subject to the behaviors described in this section.

MAT-Files. MAT-files created with earlier versions of MATLAB that contain
logical arrays will load correctly in MATLAB 6.5. Values other than 0 or 1 will
be converted to 1’s. A double array with a logical attribute, when loaded in
MATLAB 6.5, will be a logical array.

Mixed-Mode Arithmetic. Mixed-mode arithmetic (e.g., arithmetic involving a
logical and a double) dispatches to the function registered for the nonlogical
data type. The logical is converted to that type and the operation proceeds.
This behavior is fully backward compatible with how MATLAB works in
MATLAB 6.0.

2 MATLAB 6.5 Release Notes

2-58

Converting logical to double. You can use the double function to convert a logical
array to a double array:

b = magic(4) > 10;
whos b
 Name Size Bytes Class

 b 4x4 16 logical array

Grand total is 16 elements using 16 bytes

b = double(b);
whos b
 Name Size Bytes Class

 b 4x4 128 double array

Grand total is 16 elements using 128 bytes

Indexed Assignment. As a rule, MATLAB data types are preserved on indexed
assignment. This now holds true for logical, as it is now a MATLAB data type.

This example creates an empty array of type logical. The indexed assignment
to double that follows, (a(1) = 1), does not change the type to double. Its
logical type is preserved:

a = logical([]);
whos a
 Name Size Bytes Class

 a 0x0 0 logical array

Grand total is 0 elements using 0 bytes

a(1) = 1;
whos a
 Name Size Bytes Class

 a 1x1 1 logical array

Grand total is 1 element using 1 bytes

Upgrading from an Earlier Release

2-59

Passing NaN or Complex to logical Functions. Attempting to pass NaN or complex
values to an if or while statement, or to and, or, not, or logical, now
consistently generates an error:

logical(NaN)
??? Error using ==> logical
NaN's cannot be converted to logicals.

not(2j)
??? Error using ==> not
Operands to NOT must not be complex.

Creating Logical Matrices with the sparse Function. Previously, when creating sparse
logical matrices, the sparse function accumulated entries when it encountered
repeated indices. For example,

A = sparse([1 1 1], 1, logical([1 0 1]))
A =
 (1,1) 2

In MATLAB 6.5, sparse now returns an error, because the only valid logical
values are 0 and 1:

A = sparse([1 1 1], 1, logical([1 0 1]))
??? Error using ==> sparse
Repeated indices are not supported for sparse logical matrices.

Changes to Definition of “Truth”
As MATLAB has evolved, its definition of truth has become complicated and
inconsistent. One goal of MATLAB 6.5 is to present a simple and self-consistent
definition of truth that applies in all situations.

This change affects the following types of operations.

Comparing Empty with Empty or Scalar. MATLAB now returns an empty array ([])
when you compare two 0-by-0 empty arrays, or a 0-by-0 empty array with a
scalar. This behavior also affects comparisons performed inside if and while
statements.

2 MATLAB 6.5 Release Notes

2-60

Comparing two 0-by-0 empty arrays:

a = [];

b = (a == [])
b =
 []

Comparing a 0-by-0 empty array with a scalar:

b = (a == 5)
b =
 []

This behavior is now consistent with all other binary operators (e.g., >, <, ~=, +,
-, .*, etc.).

Comparing Empty with Nonscalar. MATLAB now returns a dimension mismatch
error when you compare a 0-by-0 empty array with a sized array:

a = [];

a == [1 2 3]
??? Error using ==> ==
Matrix dimensions must agree.

Using NaN with any or all. The any and all functions now ignore NaN. Thus any
now returns 0 for a vector having NaNs as its only nonzero elements. The behavior of
all is unaffected by this change, but it means that any and all now behave
consistently with other reduction operators like min and max:

a = [0 0 NaN 0 NaN];
any(a)
ans =
 0

Interaction with Objects. In previous versions of MATLAB, passing a user-defined
object as the argument to if or while caused the interpreter to call the object’s
double method (assuming it had one) in order to convert it to something whose
truth could be determined. MATLAB 6.5 handles this situation by looking first
for a logical method for the object and, upon failing to find one, calls its
double method, if one exists.

Upgrading from an Earlier Release

2-61

If you have objects that will participate in truth evaluation, you should provide
a logical method for those objects. The logical method must return 0 or 1
(false or true).

The sparse Class Is Now an Attribute
In previous versions of MATLAB, sparse was a first class data type and
MATLAB class (subclass of double). This is illustrated in the following
example (executed in MATLAB 6.1), where sparse(eye(3)) produces a sparse
array:

s = sparse(eye(3));
whos s
 Name Size Bytes Class

 s 3x3 52 sparse array

Grand total is 3 elements using 52 bytes

In MATLAB 6.5, sparse becomes an attribute of a MATLAB class. The class
hierarchy diagram below represents the MathWorks long-range plan for
sparse, where full and sparse are attributes of all MATLAB classes.

 ARRAY

char NUMERIC cell structure

double

 int8, uint8,
int16, uint16,
int32, uint32,
int64,uint64

user classes java classes

function
handle

single

[full or sparse]

logical

2 MATLAB 6.5 Release Notes

2-62

Note In MATLAB 6.5, the sparse attribute is supported for the double and
logical classes only.

The same example, executed in MATLAB 6.5, produces a double array with a
sparse attribute:

s = sparse(eye(3));
whos s
 Name Size Bytes Class

 s 3x3 52 double array (sparse)

Grand total is 3 elements using 52 bytes

Effect on Related Functions. The table below compares the results obtained from a
number of functions that operate on sparse arrays. The variable a in the table
is derived as follows:

a = sparse(eye(3));

Command MATLAB 6.1 Result MATLAB 6.5 Result

whos a sparse array double array (sparse)

class(a) sparse double

issparse(a) 1 1

isa(a,'sparse') 1 0

isa(a,'double') 1 1

double(a) double array double array (sparse)

full(a) double array double array

x = logical(a) sparse array (logical) logical array (sparse)

class(x) sparse logical

full(x) double array (logical) logical array

Upgrading from an Earlier Release

2-63

Note issparse(a) and isa(a,'sparse') give different results. The former
indicates that a is a sparse matrix; the latter that a is not of the sparse class.

Behavior of issparse is Unchanged. Note in the table above that issparse continues
to return 1 for arrays with a sparse attribute, as it did in previous releases for
sparse arrays.

Arithmetic Operations. Arithmetic operations continue to work on sparse doubles
as they do today.

Determining Storage Type. Make sure that your programs do not use class or isa
to determine if a matrix uses sparse storage. Use issparse instead. It is both
simpler and faster.

Methods in @sparse Directories. If you have written your own algorithms for
dealing with sparse matrices and placed them in an @sparse directory,
MATLAB will not access them because sparse is no longer a class.

MAT-Files. MAT-files created with earlier versions of MATLAB that contain
sparse arrays will load correctly in MATLAB 6.5. A sparse array, when loaded
in MATLAB 6.5, will be a double array with a sparse attribute, or a logical
array with a sparse attribute if the array originally had the logical attribute.
(See “The logical Attribute Is Now a Class” on page 2-55 for information on
changes to logical).

Converting to Full. Use full(x) instead of double(x) to ensure that variable x is
full. The double function no longer removes the sparseness of an array:

s = sparse(eye(3));
s = double(s);
whos s
 Name Size Bytes Class

 s 3x3 52 double array (sparse)

Grand total is 3 elements using 52 bytes

2 MATLAB 6.5 Release Notes

2-64

Use full instead to make the array full:

s = full(s);
whos s
 Name Size Bytes Class

 s 3x3 72 double array

Grand total is 9 elements using 72 bytes

Testing for full arrays. You should no longer use the following statement to test
whether an array is full (nonsparse). Because the sparse class has been
removed in MATLAB 6.5, this statement now returns 1 for both full and sparse
arrays:

strcmp(class(s), 'double') == 1

In place of the above statement, use the following to test for a full array:

~issparse(s)

For example, create a sparse array, s, and test to see if it is a full array:

s = sparse(eye(3));

~issparse(s)
ans =
 0

Indexed Assignment. As a rule, MATLAB data attributes are not preserved on
indexed assignment. This now holds true for sparse, as it is now an attribute.

This example creates a sparse double array. The indexed assignment to a full
double that follows, (s(:) = rand(3)), removes the sparse attribute from the
array:

s = sparse(eye(3));
whos s
 Name Size Bytes Class

 s 3x3 52 double array (sparse)

Grand total is 3 elements using 52 bytes

Upgrading from an Earlier Release

2-65

s(:) = rand(3);
whos s
 Name Size Bytes Class

 a 3x3 72 double array

Grand total is 9 elements using 72 bytes

Logical Indexing and find
The following two statements are intended to be equivalent in MATLAB.
However, prior to this release, the statements were not equivalent in the case
where a is nondouble and b contains only zeros:

a(find(b))
a(logical(b))

This has been fixed in this release. For the a and b shown here, the three
equations that follow return the same result:

a = [int8(1) int8(2) int8(3)];
b = a > 5;

r1 = a(find(a > 5));
r2 = a(b);
r3 = a(a > 5);

As a result of this fix, you can now use either of the last two, simpler forms in
place of the form that requires the use of find.

Warning Control Upgrade Issues
See the section on “Warning Control Features” on page 2-25 in these Release
Notes for information on how you can control the way MATLAB handles the
selected warnings in your programs.

Changes to Functionality. In some case, these changes to warning control will
affect warning statements that currently exist in your code. The following two
tables present how Versions 6.0 and 6.5 of MATLAB respond to MATLAB 6.0
warning syntax.

2 MATLAB 6.5 Release Notes

2-66

This table shows the MATLAB 6.0 behavior.

For backward compatibility, MATLAB will continue to accept every usage of
warning shown in the left column of the table above. However, some changes
will be made to their actual behavior, as shown in the table below.

MATLAB 6.0 Syntax MATLAB 6.0 Behavior

warning backtrace warning on all; Enable backtraces.

warning backtrace off warning on all; Disable backtraces.

warning backtrace on warning on all; Enable backtraces.

warning off backtrace warning on all; Disable backtraces.

warning on backtrace warning on all; Enable backtraces.

warning debug warning on all; dbstop if warning

warning debug off warning on all; dbclear if warning

warning debug on warning on all; dbstop if warning

warning off debug warning on all; dbclear if warning

warning on debug warning on all; dbstop if warning

warning once warning once ...
<each-HG-back-compat-message-identifier>

warning always warning always ...
<each-HG-back-compat-message-identifier>

warning ans gets one of on, off, debug, or backtrace.

s = warning(...) s gets one of on, off, debug, or backtrace.
Process inputs (if any) as above.

[s, f] = warning(...) s gets one of on, off, debug, or backtrace.
f gets one of once or always. Process inputs
(if any) as above.

Upgrading from an Earlier Release

2-67

This table shows the MATLAB 6.5 behavior in response to MATLAB 6.0
warning command syntax.

Outputs Returned by Warning. Prior to MATLAB 6.5, warning returned up to two
outputs: state and frequency. Neither of these is meaningful anymore, as
there is no longer neither a single warning state nor a single warning frequency
to return.

MATLAB 6.0 Syntax MATLAB 6.5 Behavior

warning backtrace Enable backtraces.

warning backtrace off Disable backtraces.

warning backtrace on Enable backtraces.

warning off backtrace Disable backtraces.

warning on backtrace Enable backtraces.

warning debug dbstop if warning

warning debug off dbclear if warning

warning debug on dbstop if warning

warning off debug dbclear if warning

warning on debug dbstop if warning

warning once Warning - warning frequency is no longer
supported.

warning always Warning - warning frequency is no longer
supported.

warning warning query all; (doesn’t assign to ans).

s = warning(...) s = warning('query', 'all');
then process inputs (if any) as above.

[s, f] = warning(...) Warning - warning frequency is no longer
supported.

2 MATLAB 6.5 Release Notes

2-68

The frequency output is now disallowed. MATLAB generates a warning if you
request this output.

The warning function now returns a structure instead of a string for the state
output. Any existing code that uses this output should continue to function
normally, but should be examined to make sure that the state value is
properly interpreted in this new context.

Formatted Error and Warning Strings
For backward compatibility, if only one input is passed to error or warning,
MATLAB treats it as a fixed string, not a format string. See “Formatted String
Conversion” in Errors and Warnings in the MATLAB documentation.

getfield and setfield Superseded
Since dynamic field names improve on the getfield and setfield, these two
functions will eventually be removed from the MATLAB language. In
MATLAB 6.5, getfield and setfield will generate a warning message
encouraging you to use dynamic field names instead. See the section, “Dynamic
Field Names for Structures” on page 2-25 for more information on this.

New Behavior in break
The break function is intended to be used within a for or while loop. Use of
break outside of a loop results in a warning being issued.

isequal and Structure Field Creation Order
When comparing structures with isequal, MATLAB no longer considers the
order in which the fields of the structures were created in determining
equality. See Example 2 on the isequal reference page.

Set Operations on Cell Arrays of Strings
The intersect, setdiff, and setxor functions have been modified to handle
cell arrays of strings having one of more trailing spaces in a manner that is

Upgrading from an Earlier Release

2-69

consistent with its handling of other array types. These set functions no longer
ignore trailing spaces when doing the comparison. See the examples below:

Using mat2cell on an Empty Array
If you invoke mat2cell on an empty array, the function now returns an empty
cell array rather than issuing an error. This requires that all zero dimensions
of the empty input array have a corresponding mat2cell argument equal to [].

In the following example, the third input argument to mat2cell specifies how
MATLAB is to divide up the second dimension of the input array, X, in the
resultant cell array. (See the mat2cell reference page for help on syntax.)
Because the second dimension of X is of zero size, the only valid division
specifier is [].

X = rand(3, 0, 4);
C = mat2cell(X, [1 2], [], [2 1 1])
C =
 Empty cell array: 2-by-0-by-3

Concatenating with Empty Arrays
Empty arrays in concatenation operations can now affect the data type of the
output. The only time you are likely to see this is when concatenating doubles
and logicals. In previous versions of MATLAB, the example shown below
returned a double array with a logical attribute. Now it returns a double
because the empty double input is no longer ignored:

Prior to MATLAB 6.5 MATLAB 6.5

intersect({'A'}, {'A '})
ans =
 'A'

intersect({'A'}, {'A '})
ans =
 {}

setdiff({'A'}, {'A '})
ans =
 {}

setdiff({'A'}, {'A '})
ans =
 'A'

setxor({'A'}, {'A '})
ans =
 {}

setxor({'A'}, {'A '})
ans =
 'A' 'A '

2 MATLAB 6.5 Release Notes

2-70

a = [[] logical(0)];
whos a
 Name Size Bytes Class

 a 1x1 8 double array

Grand total is 1 element using 8 bytes

Concatenating Empty Cell Arrays. You cannot concatenate an empty cell array with
numeric or character values:

a = ['string' {}]
??? Error using ==> horzcat
Conversion to cell from char is not possible.

Function Names Redefined As Variable Names
Under the conditions listed below, if you define a variable using a name that
already belongs to a function, MATLAB issues the following warning message:

Variable <variable name> has been previously used as a function
name.
(Type "warning off MATLAB:mir_warning_variable_used_as_function"
to suppress this warning.)

This warning is issued only when all of the following conditions are true:

• The variable definition appears in an M-file function

• Within that M-file function, the name is used in a function call, and then
later used as a variable name

For example, the first line of the function shown below uses the term i to call
the MATLAB function that returns the complex constant. Some time later, in
the for loop, the function code redefines i so that MATLAB now interprets it
as a variable name, and assigns to the variable the values 1:10.

function myfun
x = 5 + i;

Upgrading from an Earlier Release

2-71

for i = 1:10
 <do something>
end

y = 32 + i;

When MATLAB compiles this M-file function, it issues the warning message
shown above. The reason for the warning is illustrated in the last line of the
code shown in the example. The statement 32 + i does not add the complex
constant i to 32 as intended, but instead adds the value 10 to 32. This is
because the opening for loop statement redefined the name i as a variable
name and the last value assigned to that variable was 10.

Note that this is a compile-time warning only. M-files run for the first time in
a MATLAB session, or run after being cleared from memory (e.g., by clear
functions) may issue this warning. M-files that are executed from cache do
not.

Specifying More Outputs Than a Function Defines
A function call that requests more output values than are generated by the
function being called now returns an error instead of a warning. Consider the
function below that declares two outputs in the function definition line and
assigns a value to one of them.

function [A, B] = mult_by_two(C)
A = 2 * C;

Calling this function with one output specified in the call completes
successfully. Calling the function with two outputs specified returns an error.
Even though two outputs are declared in the function definition line, only one
output is generated in the function body.

[A, B] = mult_by_two(5)
??? One or more output arguments not assigned during call to
'mult_by_two'.

In previous versions of MATLAB, this type of call resulted in a warning. As a
result, execution of the function continued and assignment to output variable
A completed successfully.

In MATLAB 6.5, this type of call generates an error and aborts execution of the
M-file. As a result, A remains undefined.

2 MATLAB 6.5 Release Notes

2-72

Consistent Handling of Subscripting Errors
The way in which MATLAB handles invalid subscripting is more consistent in
MATLAB 6.5. MATLAB now responds to all of the situations listed below with
this one error message:

??? Subscript indices must either be real positive integers or
 logicals.

The types of invalid subscripting that yield this error are shown in this table.

The only functional change is that subscripting with noninteger values is now
always treated as an error rather than a warning. In previous versions of
MATLAB, this was an error only for sparse matrices.

Consistent Handling of Logical Errors
MATLAB now responds to the following types of invalid logical expressions as
shown here:

• Bad arguments to logical (e.g., logical(2)):
 Warning: Logical was assigned values other than 0 or 1.

• Bad assignment to logicals (e.g., x = logical([1 0 1]); x(2) = 2):
 Warning: Logical was assigned values other than 0 or 1.

• Complex assignment to logical (e.g., logical(i)):
 Complex argument is not allowed in LOGICAL.

Type of Subscript Example

Complex x(2i)

Noninteger x(1.2)

Negative x(-5)

Zero x(0)

NaN x(NaN)

Inf x(Inf), x(-Inf)

Upgrading from an Earlier Release

2-73

• Using NaN in a logical expression (e.g., logical(NaN)):
 NaN's cannot be assigned to logical arrays.

• NaN in an expression with and, or, not (e.g., 5 & NaN):

 NaN's cannot be converted to logicals.

Note Logical values are 1 (for true) and 0 (for false). Other nonzero values
implicitly convert to true. Complex values and NaN cannot be converted
implicitly. Use ~=0 to convert these to logicals. For example, x = (NaN~=0).
to make x logical.

Empty Array in Comparisons. When you use an empty array in an equal or not
equal comparison statement, MATLAB now returns an empty array as the
result. In previous versions, MATLAB returned zero and displayed a warning.

For example, this statement now returns an empty array:

[] == 5
ans =
 []

The previous return value was a vestige of much older MATLAB behavior. The
new return value is now consistent with all other binary operations involving
empty arrays. For example, [] + 5 yields [].

Operations That Are Now Considered Invalid
The following operations now return an error or warning.

Passing Complex to if or while. Passing a complex value to if or while now returns
an error:

a = 5j;
if a
 disp 'true'
end
??? Complex values cannot be converted to logicals.

Previously, the imaginary part was ignored unless the argument was sparse.

2 MATLAB 6.5 Release Notes

2-74

Passing NaN to if or while. Passing NaN to if or while now returns an error:

a = NaN;
if a
 disp 'true'
end
??? NaN's cannot be converted to logicals.

Previously, this generated an error unless the NaN had the logical attribute.

Passing Complex to logical. Passing a complex argument to the logical function
or assigning a complex value to a logical variable returns an error:

a = 5j;
x = logical(a);
??? Error using ==> logical
Complex values cannot be converted to logicals.

This has always been an error.

Passing NaN to logical. Passing a NaN argument to the logical function or
assigning NaN to a logical variable now returns an error:

a = NaN;
x = logical(a)
??? Error using ==> logical
NaN's cannot be converted to logicals.

Previously, this assigned a the value NaN with a logical attribute.

Passing Complex to and, or, not. Passing a complex argument to the and, or, or not
functions now returns an error:

a = 5j;
x = ~a;
??? Error using ==> ~
Operands to NOT must not be complex.

Previously, this assigned a the value zero.

Upgrading from an Earlier Release

2-75

Passing NaN to and, or, not. Passing NaN to the and, or, or not functions now
returns an error:

a = NaN;
x = ~a
??? Error using ==> ~
NaN's cannot be converted to logicals.

Previously, this assigned a the value zero.

Assigning Nonlogical Values to logical. Passing incompatible arguments to the
logical function or assigning them to a logical variable now generates a
warning. Note in the example below that the value assigned to the logical
array (100) is converted by MATLAB to logical 1.

a = (magic(4) > 10);
a(2,3) = 100
Warning: Values other than 0 or 1 converted to logical 1

a =
 1 0 0 1
 0 1 1 0
 0 0 0 1
 0 1 1 0

Previously, this resulted in no warning and assigned 100 to a(2,3).

Graphics Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of graphics features, are discussed below.

Change to smooth3
Calculation of the gaussian filter option of the smooth3 function has been
corrected. This change may result in visual changes to graphs made with the
smoothed data.

2 MATLAB 6.5 Release Notes

2-76

External Interfaces/API Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of external interfaces and API features, are discussed below. These include

• “Changes to logical and sparse Data Types” on page 2-76

• “Functions Replaced in MATLAB 6.5” on page 2-77

• “Compiling C++ Files” on page 2-79

• “LCC Support for LAPACK” on page 2-79

• “Client Support for COM” on page 2-79

Changes to logical and sparse Data Types
In MATLAB 6.5, the sparse data type has been changed to be an attribute of
its underlying data type. Also, the logical data attribute has been changed to
be a first class data type. See “Programming and Data Types Upgrade Issues”
on page 2-52 for more information on this change.

The following sections describe how this change may affect your C programs.

No Change to mxIsLogical. The mxIsLogical function is unchanged in MATLAB
6.5. It returns true for logical arrays, as it did for arrays with a logical
attribute in previous releases.

Testing for Numeric. In previous releases, mxIsNumeric returned true for
numeric arrays with the logical attribute. This function now returns false
for logical arrays, since logical is a nonnumeric data type.

Using mxGetClassID on logicals. mxGetClassID returns a new mxLOGICAL_CLASS
value for logical arrays.

Using mxGetClassID on Sparse Arrays. mxGetClassID no longer returns the
enumerated value mxSPARSE_CLASS. Instead, it returns the enumerated value
corresponding to the underlying data type. Use mxIsSparse to determine if an
mxArray is sparse.

Testing for Sparse. In previous releases, you could use the following statement to
determine if a matrix is sparse. This does not work in MATLAB 6.5.

mxGetClassID(x) == mxSPARSE_CLASS

Upgrading from an Earlier Release

2-77

You should use mxIsSparse(x) to determine if a matrix is sparse. The
mxIsSparse function operates the same as in previous releases and also
executes faster than the operation shown above.

Testing for Sparse with mxIsDouble. Because sparse has been changed from a
MATLAB data type to a data attribute, mxIsDouble(x) no longer implies
~mxIsSparse(x), as it did in previous releases. Test the sparseness of an array
using mxIsSparse instead.

No Change to mxIsSparse. The mxIsSparse function is unchanged in MATLAB
6.5. It returns true for arrays with a sparse attribute, as it did for sparse
arrays in previous releases.

Obsolete logical Functions. The following two functions are now obsolete. Support
for these functions will be removed in a future release.

Functions Replaced in MATLAB 6.5
MATLAB handles mxArrays more efficiently in version 6.5 by not storing a
variable name in the mxArray. When an mxArray name is required, these new
C and Fortran functions enable you to pass it in the argument list.

The functions shown in the left column of the table replace those in the right
column. The functions shown in the right column are now obsolete and may be
unavailable in a future version of MATLAB.

Function Description

mxSetLogical Convert mxArray to logical type

mxClearLogical Convert mxArray to numeric type

New Function Replaces

mexGetVariable mexGetArray

mexGetVariablePtr mexGetArrayPtr

mexPutVariable mexPutArray

engGetVariable engGetArray

2 MATLAB 6.5 Release Notes

2-78

For example, you should replace the second and third line shown here

parr = mxCreateDoubleMatrix(0, 0, 0);
mxSetName(parr, name);
retval = matPutArray(ph, parr);

with the second line shown below. The name of the mxArray is passed with
matPutVariable rather than stored in the mxArray by mxSetName:

parr = mxCreateDoubleMatrix(0, 0, 0);
retval = matPutVariable(ph, name, parr);

mxCreateScalarDouble Replaced. New function mxCreateDoubleScalar replaces
mxCreateScalarDouble. The latter function is still supported at this time, but
support may be removed in a future release.

engPutVariable engPutArray

matDeleteVariable matDeleteArray

matGetVariable matGetArray

matGetVariableInfo matGetArrayHeader

matGetNextVariable matGetNextArray

matGetNextVariableInfo matGetNextArrayHeader

matPutVariable matPutArray

matPutVariableAsGlobal matPutArrayAsGlobal

New Function Replaces

mxCreateDoubleScalar mxCreateScalarDouble

New Function Replaces

Upgrading from an Earlier Release

2-79

Compiling C++ Files
You no longer need to use the preconfigured options file, cxxopts.sh, to
compile C++ MEX-files. MATLAB recognizes the following file extensions as
C++ extensions, and automatically uses the C++ compiler.

.cxx

.cpp

.cc

The cxxopts.sh file is no longer available in MATLAB.

Also, on UNIX, you must now use the -cxx switch to the MEX script if you are
linking C++ objects.

LCC Support for LAPACK
On Windows platforms, you can now compile and link C MEX-files that call
LAPACK and BLAS functions using the MATLAB C compiler, Lcc. Use the
following command to compile the file myCmexFile.c and link it with the
LAPACK library file, libmwlapack.lib.

mex myCmexFile.c <matlab>/extern/lib/win32/lcc/libmwlapack.lib

The term <matlab> stands for the MATLAB root directory.

Client Support for COM
Client support for the MATLAB COM interface has changed significantly in
MATLAB 6.5. There are many new features as well as important changes in
previously supported features. This section describes how these changes may
affect your existing programs.

See “New COM Client Support Features” on page 2-34 in these Release Notes
and “MATLAB COM Client Support” in the MATLAB documentation for more
information.

Creating an Object or Interface. When you create a COM control or server with
actxcontrol or actxserver, MATLAB returns a COM object which now is
displayed as COM.<string> rather than as activex object:

h = actxserver('Excel.Application')
h =
 COM.excel.application

2 MATLAB 6.5 Release Notes

2-80

This also applies to interfaces to a COM object. MATLAB represents the
interface as Interface.<string> rather than as activex object:

w = get(h, 'Workbooks')
w =
 Interface.excel.application.Workbooks

New Error on Non-Existent ProgID. Both actxcontrol and actxserver return a
different error message when an invalid ProgID is entered:

h = actxcontrol('xxxxx')
??? Error using ==> actxcontrol
Control creation failed. Invalid ProgID 'xxxxx'

Data Returned by get. Information returned by the get function now shows the
type for each interface:

h = actxserver ('Excel.Application');
get(h)
ans =
 Application: [1x1 Interface.excel.application.Application]
 Parent: [1x1 Interface.excel.application.Parent]
 Windows: [1x1 Interface.excel.application.Windows]
 Workbooks: [1x1 Interface.excel.application.Workbooks]
 .
 .

Property names returned by get are no longer arranged alphabetically. They
are displayed in the order that MATLAB gets them from the Type Library.

Set Invoked with No Arguments. When you invoke the set function without any
arguments other than the object or interface handle, MATLAB no longer
returns an error. Instead it returns a structure array, listing all properties for
the object. The structure array also contains enumerated values for those
properties that allow you to express values as enumerated strings.

Old error message:

set(h)
??? Index exceeds matrix dimensions.

Upgrading from an Earlier Release

2-81

Values returned in MATLAB 6.5:

set(h)
ans =
 Application: {}
 Creator: {'xlCreatorCode'}
 Parent: {}
 Cursor: {4x1 cell}
 .
 .

Change in Method Data Returned by invoke. The invoke function now returns more
useful data on the methods of an object or interface. Note the differences shown
in the example below:

h = actxserver('excel.application');

% Invoke, prior to MATLAB 6.5
invoke(h)
 DeleteCustomList = Void DeleteCustomList (Int)
 MailLogon = Void MailLogon (Variant[opt], Variant[opt],
 Variant[opt])
 NextLetter: 'Variant(Pointer) NextLetter ()'
 :
 :

% Invoke, in MATLAB 6.5
invoke(h)
 DeleteCustomList: 'void DeleteCustomList(handle, int32)'
 MailLogon: 'void MailLogon(handle, [Optional]Variant)'
 NextLetter: 'handle NextLetter(handle)'
 :
 :

Also note that the required handle argument is now explicitly shown.

2 MATLAB 6.5 Release Notes

2-82

Methods Function for COM. The methods function now returns the names for all
methods of the specified class:

h = actxcontrol('MWSAMP.MWSampCtrl.1');
methods(h)

Methods for class COM.mwsamp.mwsampctrl.1:

AboutBox GetR8Array SetR8 move
Beep GetR8Vector SetR8Array propedit
FireClickEvent GetVariantArray SetR8Vector release
GetBSTR GetVariantVector addproperty save
 :
 :

You can also use the methodsview function on COM objects now to get a
graphical display of object properties.

Properties with Arguments. Any property that takes arguments is treated as a
method in MATLAB 6.5. For example, the Range and Item properties in an
Excel application server are now methods.

So, this statement, where Item is a property of Sheets

sheet2 = get(Sheets, 'Item', 2);

can now be replaced by the following, where Item is now a method of Sheets.

sheet2 = invoke(Sheets, 'Item', 2);

If you request a list of properties and methods for Sheets (using get and
invoke, respectively), MATLAB now lists Item as a method.

For backward compatibility, functions in MATLAB 6.5 support properties that
take arguments both as methods and as properties.

Arguments to Event Handlers. When a control triggers an event, MATLAB passes
arguments from the control to any registered event handlers. MATLAB now
passes two additional arguments:

• A string argument, holding the name of the event.

• A structure argument, holding the event name, control name, event
identifier, event argument names, and event argument values.

Upgrading from an Earlier Release

2-83

See “Writing Event Handlers” in the MATLAB documentation for more
information on changes affecting event handlers.

Specifying Events Using Identifiers. When registering events with their handler
functions using either the actxcontrol or registerevent function, you can
specify events either by event ID number or by event name.

Using event ID numbers:

h = actxcontrol('MWSAMP.MwsampCtrl.2', [0 0 200 200], f, ...
 {-600, 'myclick'; -601 'my2click'; -605 'mymoused'});

Using event names:

h = actxcontrol('MWSAMP.MwsampCtrl.2', [0 0 200 200], f, ...
 {'Click', 'myclick'; 'DblClick' 'my2click'; ...
 'MouseDown' 'mymoused'});

Use the new events function to display the names of all events recognized by
the COM object in use. For example, to list all events for the mwsamp control, use

f = figure ('pos', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

events(h)
 Click = void Click()
 DblClick = void DblClick()
 MouseDown = void MouseDown(int16 Button, int16 Shift,
 Variant x, Variant y)

Boolean Return Values. Invoking get on a property that returns a Boolean value
now returns 1 to indicate true. Previously, it returned -1 for true:

h = actxserver('Excel.Application');
set(h, 'DisplayStatusBar', 1);
get(h, 'DisplayStatusBar')
ans =
 1

2 MATLAB 6.5 Release Notes

2-84

Also, invoking a method that returns a Boolean value now returns 1 to indicate
true. This also previously returned -1 for true:

h = actxserver('Excel.Application');
invoke(h, 'Wait', 5)
ans =
 1

Argument Callouts in Error Messages. When a MATLAB client sends a command
with an invalid argument to a COM server application, the server sends back
an error message similar to that shown here, identifying the invalid argument.
Be careful when interpreting the argument callout in this type of message.

PutFullMatrix(handle, 'a', 'base', 7, [5 8]);
??? Error: Type mismatch, argument 3.

In the PutFullMatrix command shown above, it is the fourth argument, 7, that
is invalid. (It is scalar and not the expected array data type.) However, the
error message identifies the failing argument as argument 3.

This is because the COM server receives only the last four of the arguments
shown in the MATLAB code. (The handle argument merely identifies the
server. It does not get passed to the server). So the server sees 'a' as the first
argument, and the invalid argument, 7, as the third.

As another example, submitting the same command with the invoke function
makes the invalid argument fifth in the MATLAB client code. Yet the server
still identifies it as argument 3 because neither of the first two arguments are
seen by the server.

invoke(handle, 'PutFullMatrix', 'a', 'base', 7, [5 8]);
??? Error: Type mismatch, argument 3.

Releasing and Deleting Controls or Servers. This release addresses a potential
memory leak in MATLAB. The leak was caused by the following:

• MATLAB did not completely clean up COM objects or interfaces without the
explicit use of release or delete. For example, the following clear command
did not release all memory used by the object. An explicit release(h) was
required before the clear:
 h = actxcontrol ('MWSAMP.MwsampCtrl.1');
 clear all

Upgrading from an Earlier Release

2-85

• When a variable representing a COM object or interface was successfully
assigned a new value, MATLAB did not release all of the memory originally
allocated to the object or interface.

• When such a variable went out of scope, MATLAB did not release all of the
memory originally allocated.

Explicit release or deletion of a COM object or interface is no longer necessary.
MATLAB successfully clears the object or interface from memory when clear
is invoked, or when the variable that represents the object or interface is either
assigned a new value or goes out of scope.

Creating Graphical User Interfaces (GUIDE)
Upgrade Issues
Upgrading from MATLAB 6.1 to MATLAB 6.5, in terms of GUIDE-related
features, involves the following issue.

Using GUIDE Version 6.5 to Open GUIs Created in Versions 6.0 or 6.1
GUIDE generates a GUI’s associated M-file with a new structure for Version
6.5. If you open a GUI that was created in Guide versions 6.0 or 6.1 using
GUIDE version 6.5, the GUI will continue to function as it did previously.
However, GUIDE does not update the existing code in the GUI’s M-file to
match the new style. If you add new components to the GUI in GUIDE version
6.5, GUIDE generates callbacks for the new components using the new M-code
style, but leaves the original callbacks unchanged.

2 MATLAB 6.5 Release Notes

2-86

Known Software and Documentation Problems
This section includes a link to a description of known software and
documentation problems in MATLAB 6.5.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

For a list of bugs reported in the previous release that remain open, see “Known
Software and Documentation Problems” on page 3-29.

3
MATLAB 6.1 Release
Notes

New Features 3-2
Development Environment Features 3-2
Mathematics Features 3-5
Programming and Data Types Features 3-8
Graphics Features 3-10
OpenGL Renderer Feature — Microsoft Windows 3-11
External Interfaces/API Features 3-12
Creating Graphical User Interfaces — GUIDE 3-17

Major Bug Fixes 3-18
Development Environment 3-18
Mathematics . 3-18

Upgrading from an Earlier Release 3-23
Development Environment Issues 3-23
Mathematics Issues 3-24
Programming and Data Types Issues 3-25
Graphics Issue 3-26
External Interfaces/API Issues 3-27

Known Software and Documentation Problems 3-29
Development Environment Problems 3-29
Documentation Updates 3-30

3 MATLAB 6.1 Release Notes

3-2

New Features
This section introduces the new features and enhancements added in MATLAB
6.1 since MATLAB 6.0 (Release 12.0).

This section about new features is organized into the following subsections:

• “Development Environment Features” on page 3-2

• “Mathematics Features” on page 3-5

• “Programming and Data Types Features” on page 3-8

• “Graphics Features” on page 3-10

• “OpenGL Renderer Feature — Microsoft Windows” on page 3-11

• “External Interfaces/API Features” on page 3-12

• “Creating Graphical User Interfaces — GUIDE” on page 3-17

If you are upgrading from a release earlier than Release 12.1, then you should
see “New Features” on page 4-2.

Development Environment Features

Command Window
MATLAB 6.1 includes two command window enhancements:

• You can set a preference for the command window to wrap lines. Input and
output lines wrap to fit within the current width of the command window.

• If an error message appears when running an M-file, click on the underlined
portion of the error message, or press Ctrl+Enter. The offending M-file opens
in the Editor, scrolled to the line containing the error.

Help Browser
When you select documentation for the product filter, you can clear all
currently selected products or select all products.

New Features

3-3

Editor/Debugger
The Editor/Debugger has the following enhancements:

• You can set bookmarks in M-files in the Editor/Debugger so that you can go
directly to a particular line in the file. To set a bookmark, position the cursor
at the line you want to bookmark, and then select Set/Clear Bookmark from
the Edit menu.

After setting bookmarks, you can go to the next or previous bookmark in a
file. This allows you to go directly to a marked spot. Use the Edit menu items
Next Bookmark and Previous Bookmark to navigate. Bookmarks are not
saved when you close a file.

• You can include line numbers when printing files from the Editor/Debugger.
To include line numbers, select Preferences -> Editor/Debugger ->
Printing. Under Print options, check Print line numbers.

• You can use keyboard shortcuts to comment or uncomment a selection in the
Editor/Debugger. The shortcuts are platform dependent and are listed with
the menu items on the Editor/Debugger Text menu.

• In the Find/Replace dialog box, settings for Match case, Whole word, and
Wrap around are remembered for the next MATLAB session.

• You can find the previous occurrence of a selection in the Editor/Debugger by
pressing Ctrl+Shift+F3. You can also find the previous occurrence of a string
you entered into the Find & Replace dialog box by pressing Shift+F3.

• When you move an arrow key over a token, for example, an opening
parenthesis, (, the token and its match are briefly underlined. If there is no
matching token, the token appears with a strike-through mark, .

• When you run a file from the Editor/Debugger and the file is not in a
directory on the search path or in the current directory, a dialog box appears
presenting you with options that allow you to run the file. You can either
change the current directory to the directory containing the file, or you can
add to the search path the directory containing the file.

If the file you want to run is already in a directory on the search path or in
the current directory, the current directory remains as is and there are no
actions you need to take.

3 MATLAB 6.1 Release Notes

3-4

• When you add a breakpoint to a file that is not in a directory on the search
path or in the current directory, a dialog box appears presenting you with
options that allow you to add the breakpoint. You can either change the
current directory to the directory containing the file, or you can add to the
search path the directory containing the file.

If the file you want to run is already in a directory on the search path or in
the current directory, the current directory remains as is and there are no
actions you need to take.

• If you type edit filename and filename does not exist, a prompt appears
asking if you want to create a new file. If you select Yes, a blank file titled
filename.m is created in the Editor/Debugger. You can turn off this option in
preferences for the Editor/Debugger.

Current Directory Browser
In the Find/Replace dialog box, settings for Match case, Whole word, and
Subdirectories are remembered for the next MATLAB session.

Also, you can delete directories that are not empty. All contents of the directory
will be deleted along with the directory.

Workspace Browser
You can select the column on which to sort in the Workspace browser, as well
as reverse the sort order of any column. Click on a column heading to sort on
that column. Click on the column heading again to reverse the sort order in
that column. For example, to sort on Size, click the column heading once. To
change from ascending to descending, click on the heading again.

Source Control
If you use Merant PVCS with MATLAB source control features, you no longer
need to specify the project configuration file using cmopts. If you did specify it
in previous releases, you do not have to remove it as MATLAB will ignore it.

General
The computer function now displays the endian byte ordering of the computer
with the following form.

[str,maxsize,endian] = computer

New Features

3-5

Mathematics Features

Evaluation of Solutions to Differential Equation Problems
A new function, deval, enables you to evaluate the solution of a differential
equation problem at a vector of points from the interval in which the problem
was solved. deval uses, as input, the output structure sol of an initial value
problem solver (ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb) or the
boundary value problem solver (bvp4c). A new ODE solver syntax returns the
structure sol.

Additional Functions Use Qhull
These functions are now based on Qhull:

• delaunay — two-dimensional Delaunay triangulation

• convhull — two-dimensional convex hull

These functions call delaunay and therefore are now indirectly based on Qhull:

• voronoi — two-dimensional Voronoi diagrams

• griddata — data gridding and surface fitting

These functions are in addition to the Qhull-based functions introduced in
MATLAB 6.0 (Release 12.0): convhulln, delaunay3, delaunayn, griddata3,
griddatan, and voronoin.

Math Function Summary Tables
This section summarizes

• New math functions

• Functions with new or changed capabilities

Note See “Upgrading from an Earlier Release” on page 3-23 for information
about obsolete functions.

3 MATLAB 6.1 Release Notes

3-6

New Math Functions

Function Purpose

deval Evaluate the solution of a differential equation problem
using the output of ode45, ode23, ode113, ode15s, ode23s,
ode23t, ode23tb, or bvp4c.

erfcinv Inverse complementary error function.

tetramesh Tetrahedron mesh plot for use with delaunayn.

triplot 2-D triangular plot for use with delaunay.

Math Functions with New or Changed Capabilities

Function Enhancement/Change

bvpinit New syntax solinit = bvpinit(sol,[anew bnew])
extrapolates a solution sol as an initial guess for solving a
BVP on an extended interval. It can copy parameters from
the previous iteration or let the user to provide new ones.
For more information, see “Boundary Value Problems for
ODEs” in the MATLAB documentation.

bvpset New Vectorized option lets you pass to the solver bvp4c
an array of column vectors. This allows bvp4c to reduce
the number of function evaluations, and may significantly
reduce solution time. For more information see “Boundary
Value Problems for ODEs” in the MATLAB
documentation.

convhull New syntax [K,a] = convhull(x,y) returns the area a of
the convex hull.

convhulln New syntax [K,v] = convhulln(X) returns the volume v
of the convex hull.

New Features

3-7

numel New syntax n = numel(A, varargin) returns the number
of subscripted elements, n, in
A(index1,index2,...,indexn), where varargin is a cell
array whose elements are index1, index2, ..., indexn.

ode45,
ode23,
ode113,
ode15s,
ode23s,
ode23t,
ode23tb

New syntax sol = solver(odefun,[t0 tf],y0...)
returns a structure that you can use with the new function
deval to evaluate the solution at any point on the interval
[t0,tf].

polyeig New syntax e = polyeig(A0,A1,..,Ap) returns only the
eigenvalues of the specified eigenvalue problem. Use
[X,e] = polyeig(A0,A1,...Ap) if you also want the
eigenvectors. This capability is available in MATLAB 6.0
(Release 12.0).

ppval New syntax ppval(xx,pp) transposes the input
arguments to enable you to use ppval with function
functions.

qz New syntax [AA,BB,Q,Z,V,W] = qz(A,B) returns W, the
left generalized eigenvectors of A and B.

reshape New syntax reshape(A,...,[],...) calculates the length
of the dimension specified by the placeholder [].

svd Can now return only the first two outputs, U and S, where
S is a diagonal matrix of the same dimension as the input
argument X, and U is a unitary matrix.

Math Functions with New or Changed Capabilities (Continued)

Function Enhancement/Change

3 MATLAB 6.1 Release Notes

3-8

Programming and Data Types Features

Partial Evaluation of Expressions
Within the context of an if or while expression, MATLAB does not necessarily
evaluate all parts of a logical expression. In some cases, it is possible, and often
advantageous, to determine whether an expression is true or false through only
partial evaluation. This is sometimes referred to as short-circuiting.

For example, if A equals zero in statement 1 below, then the expression
evaluates to false, regardless of the value of B. In this case, there is no need
to evaluate B and MATLAB does not do so. In statement 2, if A is nonzero, then
the expression is true, regardless of B. Again, MATLAB does not evaluate the
latter part of the expression.

1) if (A & B) 2) if (A | B)

You can use this property to your advantage to cause MATLAB to evaluate a
part of an expression only if a preceding part evaluates to the desired state.

Note Partial evaluation of expressions in if and while was also available in
MATLAB 6.0, but was not documented.

New MATLAB Search String Function
strfind is a new character array function in MATLAB. It searches for all
occurrences of a string pattern within another, longer string. Placement of the
two string arguments in the argument list requires that you be specific about
which string is the character pattern to search for and which is the string in
which to search. This allows you more control over how the search is performed
compared with the MATLAB findstr function, particularly when executing
searches within a loop.

New Features

3-9

New File I/O Functions for Scientific Data Formats
There are six new MATLAB 6.1 functions that enable you to retrieve
information and data from Common Data Format (CDF), Flexible Image
Transport System (FITS), and Hierarchical Data Format (HDF) files.

New Audio Functions
MATLAB 6.1 includes two new audio functions for 32-bit Windows platforms
only.

Date Conversion Changes
The datenum and datestr functions can now accept a date vector, as defined by
datevec, as an input argument. For example, datestr(clock) returns the
current date and time as string such as 27-Apr-2001 15:58:41.

Function Purpose

cdfinfo Return information about a CDF file

cdfread Read data from a CDF file

fitsinfo Return information about a FITS file

fitsread Read data from a CDF file

hdfinfo Return information about an HDF or HDF-EOS file

hdfread Read data from an HDF or HDF-EOS file

Function Purpose

audioplayer Create an audio object to play audio data

audiorecorder Create an audio object to record audio data

3 MATLAB 6.1 Release Notes

3-10

Graphics Features

Transparent Legend
You can now make the legend box transparent, enabling you to see the plotted
data behind the legend. See legend for more information.

New Ghostscript Drivers
The following new Ghostscript drivers are available with MATLAB by using
the device switch shown below.

New Ghostscript Output Filters for Exporting
The following new Ghostscript output filters are available with MATLAB by
using the option switch shown below.

Higher Resolution Metafiles
You can now set the resolution of a Windows Enhanced Metafile copied from a
MATLAB figure window with the print -dmeta command. Set the resolution
using the -d option of the print command. For example, to copy a figure to a
metafile having a resolution of 200 dpi, use

print -dmeta -r200

MATLAB uses the screen resolution as the default.

Printer Driver Device Switch

Canon Color BubbleJet BJC-800 -dbjc800

HP LaserJet 4.5L and 5P -dljet4

HP LaserJet 5 and 6 -dpxlmono

File Format Option Switch

BMP Monochrome BMP -dbmpmono

PDF Color file Format -dpdf

New Features

3-11

Default PaperType and PaperUnits Set For International Users
The matlabrc.m startup file now sets the default PaperType and PaperUnits
properties based on ISO Country Codes. These default to 'a4' and
'centimeters' respectively for users in countries that normally default to
these settings. Other countries still default to 'usletter' and 'inches'.

The same values are used for default Simulink PaperType and PaperUnits
properties in the matlabrc.m startup file.

You can still set default PaperType or PaperUnits values yourself by adding
the following to startup.m.

set(0, 'DefaultFigurePaperType', 'a4')
set(0, 'DefaultFigurePaperUnits', 'centimeters')

OpenGL Renderer Feature — Microsoft Windows
If you do not want to use hardware OpenGL, but do want to use object
transparency, you can issue the following command.

feature('UseGenericOpenGL',1)

This command forces MATLAB to use generic OpenGL on Microsoft Windows
platforms. Generic OpenGL is useful if your hardware version of OpenGL does
not function correctly and you want to use image, patch, or surface
transparency, which requires the OpenGL renderer.

To reenable hardware OpenGL, use the command

feature('UseGenericOpenGL',0)

Note that the default setting is to use hardware OpenGL

To query the current state of the generic OpenGL feature, use the command

feature('UseGenericOpenGL')

See the opengl reference page for additional information.

3 MATLAB 6.1 Release Notes

3-12

External Interfaces/API Features

Concatenation of Java Arrays
In MATLAB 6.1, you can concatenate arrays of Java objects that have unlike
dimensions. The following example concatenates a 2-by-3 array of
java.lang.Integer with a 4-by-3 array of the same class.

A =
java.lang.Integer[][]:
 [1] [2] [3]
 [4] [5] [6]
 [17] [18] [19]
 [20] [21] [22]

B =
java.lang.Integer[][]:
 [11] [12] [13]
 [14] [15] [16]

The vertical concatenation [A;B] is simple since both arrays have the same
number of columns. The horizontal concatenation [A B] merges the two arrays
into an irregularly shaped array having six columns in the first and second
rows and three columns in the third and fourth rows.

C = [A;B] C = [A B]
C = C =
java.lang.Integer[][]: java.lang.Integer[][]:
 [1] [2] [3] [6 element array]
 [4] [5] [6] [6 element array]
 [11] [12] [13] [3 element array]
 [14] [15] [16] [3 element array]
 [17] [18] [19]
 [20] [21] [22]

Note “Concatenation of Java Objects” on page 3-27 discusses changes to how
Java objects are concatenated.

New Features

3-13

New Fortran MX, MEX, MAT, and ENG Functions
The following functions have been added to the Fortran MX, MEX, MAT, and
Engine external interface. Most of these functions already exist in the
MATLAB C language API.

Table 3-1: New Fortran MX Functions

mxAddField mxCalcSingleSubscript

mxClassIDFromClassName mxClearLogical

mxCopyComplex8ToPtr mxCopyInteger1ToPtr

mxCopyInteger2ToPtr mxCopyPtrToComplex8

mxCopyPtrToInteger1 mxCopyPtrToInteger2

mxCopyPtrToReal4 mxCopyReal4ToPtr

mxCreateCellArray mxCreateCellMatrix

mxCreateCharArray mxCreateCharMatrixFromStrings

mxCreateDoubleMatrix mxCreateNumericArray

mxCreateNumericMatrix mxCreateScalarDouble

mxCreateStructArray mxCreateStructMatrix

mxDestroyArray mxDuplicateArray

mxGetCell mxGetClassID

mxGetClassName mxGetData

mxGetDimensions mxGetElementSize

mxGetEps mxGetField

mxGetFieldByNumber mxGetFieldNameByNumber

mxGetFieldNumber mxGetImagData

mxGetInf mxGetNaN

mxGetNumberOfDimensions mxGetNumberOfElements

mxGetNumberOfFields mxIsCell

3 MATLAB 6.1 Release Notes

3-14

mxIsChar mxIsClass

mxIsEmpty mxIsFinite

mxIsFromGlobalWS mxIsInf

mxIsInt8 mxIsInt16

mxIsInt32 mxIsLogical

mxIsNaN mxIsSingle

mxIsStruct mxIsUint8

mxIsUint16 mxIsUint32

mxMalloc mxRealloc

mxRemoveField mxSetCell

mxSetData mxSetDimensions

mxSetField mxSetFieldByNumber

mxSetImagData mxSetLogical

Table 3-2: New Fortran MEX Functions

mexFunctionName mexGetArray

mexGetArrayPtr mexIsGlobal

mexIsLocked mexLock

mexMakeArrayPersistant mexMakeMemoryPersistant

mexPutArray mexUnlock

mexWarnMsgTxt

Table 3-3: New Fortran MAT Functions

matDeleteArray matGetArray

matGetArrayHeader matGetNextArray

Table 3-1: New Fortran MX Functions (Continued)

New Features

3-15

Property Added to ActiveX and Engine Interfaces
For ActiveX automation server applications and MATLAB Engine applications
running on Windows, you can control whether the application windows appear
on the Windows desktop with a new property called Visible.

When Visible is set, the ActiveX application or engine server window is visible
on the desktop, thus enabling user interaction with the server. This is the
default. When Visible is cleared, the application or engine window is removed
from the desktop.

ActiveX. This example disables the visibility of an ActiveX automation server
application by setting h.visible to 0. It checks the visibility setting in line 3
by examining h.visible.

h = actxserver('Matlab.Application');
h.visible = 0;

h.visible
ans =
 0

MATLAB Engine. For a MATLAB engine session, use the engSetVisible and
engGetVisible functions that are new in MATLAB 6.1. Line 4, below, disables
the visibility of the MATLAB engine window using engSetVisible with an
argument of 0. Line 5 checks this setting with engGetVisible.

Engine *ep;
bool vis;
ep = engOpen(NULL);
engSetVisible(ep, 0);
engGetVisible(ep, &vis);

matGetNextArrayHeader matPutArray

matPutArrayAsGlobal

Table 3-4: New Fortran Engine Functions

engGetArray engPutArray

Table 3-3: New Fortran MAT Functions (Continued)

3 MATLAB 6.1 Release Notes

3-16

Serial I/O
The MATLAB serial port interface provides direct access to peripheral devices
such as modems, printers, and scientific instruments that you connect to your
computer’s serial port. This interface is established through a serial port object,
which you create with the serial function.

Freeing the Serial Port on Windows Platforms. The serial port object uses the
javax.comm package to communicate with the serial port. However, due to a
memory leak in javax.comm, the serial port object is not released from memory.
You can use the freeserial function to release the MATLAB hold on the serial
port.

freeserial is necessary only on Windows platforms. You should use
freeserial only if you need to connect to the serial port from another
application after a serial port object has been connected to that port, and you
do not want to exit MATLAB.

Events, Callbacks, and Function Handles. Action properties and action functions are
now referred to as callback properties and callback functions. This new
terminology is reflected in new names for the associated properties and
functions. The general rule for the name changes is to change “Action” to “Fcn”
for properties, and “action” to “callback” for functions. For example,
TimerAction has been renamed TimerFcn, and instraction has been renamed
instrcallback.

Additionally, if you want to automatically pass the object and event
information to the callback function, then you must specify the function as
either a function handle or as a cell array. Note that you can also specify the
callback function as a string. In this case, the callback is evaluated in the
MATLAB workspace and no requirements are made on the function’s input
arguments.

Enhancements to Existing Properties.

• Terminator Property – You can configure Terminator to a decimal value
ranging from 0 to 127, to the equivalent ASCII character, to CR/LF or LF/CR,
or to empty ('').

• Timer events – Some timer events may not be processed if your system is
significantly slowed or if the TimerPeriod value is too small. The minimum
TimerPeriod value is now 0.01 second.

New Features

3-17

Creating Graphical User Interfaces — GUIDE
This section lists the changes made to GUIDE for Release 12.1:

• The Layout Editor Edit menu has Undo and Redo items. You can undo or
redo layout actions and property settings (with the exception of the figure
FileName property).

• The Application Option dialog supports a new option for Command-line
accessibility – Callback. This option is now the default.

• The Layout Editor displays the layout grid in the current figure color.

• The Layout Editor context menus have been reorganized.

• The Menu Editor enables you to rearrange the order of menu items.

• The Menu Editor adds callback function stubs to the application M-file.

See Creating Graphical User Interfaces in the MATLAB documentation for
more information.

3 MATLAB 6.1 Release Notes

3-18

Major Bug Fixes
MATLAB 6.1 includes several bug fixes made since MATLAB 6.0. This section
describes the particularly important bug fixes.

Also, MATLAB 6.1 includes several important MATLAB 6.0 bug fixes.

Development Environment

Help Browser Supports Mouse Wheel
For Windows platforms, the wheel on your mouse will now work in the Help
browser.

UNIX Help Browser Search Results Now Highlighted
On UNIX systems, when you perform a full text search using the Help browser,
the search terms are highlighted when you view a page.

UNIX Paste Problems Fixed
On some UNIX systems, pasting after a cut or copy would sometimes cause the
system to hang. That problem has been fixed. However, due to issues with
UNIX itself, the paste does not always work and you might have to do it again.

Mathematics

Memory Leak Fixed in Matrix Multiply
Under certain conditions, matrix multiply (which includes matrix-vector
multiply, vector-matrix multiply, and even vector inner products) leaked
memory. For example, on a Pentium III under Linux or Windows, any vector
inner product of length greater than 15,000 leaked memory. This was observed
by MATLAB increasing its use of system resources that were never returned.
MATLAB 6.1 uses new ATLAS BLAS libraries that no longer leak memory.

Improved Convergence for eigs(A,k,'sm') and eigs(A,k,0)
In MATLAB 6.0, eigs was reimplemented to use the ARPACK library of
routines. Unfortunately, the smallest magnitude case, sigma = 'sm' and
sigma = 0, chose the wrong algorithm. For MATLAB 6.1, the correct ARPACK
algorithm is used and convergence is much quicker.

Major Bug Fixes

3-19

This bug fix introduces a backwards incompatibility. When A is a function Afun
and sigma = 'sm', Afun must now return Y = A\x. Prior to MATLAB 6.1, eigs
required Afun to return y = A*x for this case.

quad Sampling Improved
In MATLAB 6.0, quad('cos(4*n*x)',-pi,pi) returned 2*pi instead of 0.
When quad initially sampled the function, it incorrectly assumed the function
is the constant 1 over the interval [-pi,pi] and so returned 2*pi early. It now
samples more carefully and returns 0.

griddata3 Inner Matrix Error Message
In MATLAB 6.0, an internal error sometimes caused griddata3 to display the
error message, Inner matrix dimensions must agree. This error has been
corrected.

Improved Handling of Degenerate Triangulation
In MATLAB 6.0, there were sometimes problems associated with degenerate
triangulation. For example, convhull could produce a convex hull that did not
cover all the original data. MATLAB 6.1 corrects this problem by replacing the
utility function delaunayc with Qhull.

Error Message Display for Qhull-Related Functions
In MATLAB 6.0, Qhull-related functions (e.g., delaunayn) displayed error
messages in standard error. For UNIX platforms, standard error is different
from the command window. For MATLAB 6.1, error messages are displayed in
the command window.

histc Computes First Two Bins Correctly
Prior to MATLAB 6.0, histc produced the wrong results for the first two bins
for cases with extremely nonuniform bin edges. This problem was corrected in
MATLAB 6.0.

 Processor has been on-line since 04/20/2001 14:09:31
 The alpha EV4.5 (21064) processor operates at 233 MHz,
 and has an alpha internal floating-point processor.

The number in parentheses on the third line, in above example (21064), is the
number you are interested in.

3 MATLAB 6.1 Release Notes

3-20

GLNX86. Enter the following command

cat /proc/cpuinfo

and look for the following fields in the output (values may vary from the
example below)

vendor_id :GenuineIntel
cpu family :6
model :8
model name :Pentium III (Coppermine)
stepping :1

Match up this information with the table in <MATLAB>\bin\glnx86\blas.spec.

Note Some versions of glibc 2.1.x have problems with environment variables
(and the ability to reliably query them) from within shared library init
functions. To take advantage of the BLAS_VERSION feature, you may need to
upgrade your machine to glibc 2.2.

Major Bug Fixes

3-21

HP700. Start with the System Administration Manager (SAM) and work your
way to the Processor tab, as shown below:

System Administrator Manager (SAM) -> Performance monitors ->
System properties -> Processor tab

This provides information about the type of processor.

HPUX. MATLAB only supports HPUX running on PA-RISC2.0.

IBM_RS. Contact IBM Technical Support and request the document entitled
“Determining CPU Speed in AIX.” This is a table of machine types, processor
types, and processor speeds.

SGI. Enter the following command

sysinfo -a

which returns a lot of information. In the first few lines, look for information
something like

CPU Type is mips R4400 5.0

The information starting with R is what you are interested in. MATLAB ships
for the R5000, R8000, R10000 and R12000 (default).

SOL2. Enter the following command

uname -m

which returns either sun4u for UltraSPARC or sun4m for the older, non-Ultra
machines (e.g., Hyper and SuperSPARCs).

WIN32. Start with the My Computer icon, and work your way to the General
tab, as shown below:

My Computer -> Control Panel -> System -> General tab

This should list the family and model number for your computer. On Windows
NT and Windows 2000, the same information is on the Environment tab,
under the System Variable PROCESSOR_IDENTIFIER. Match up this information
with the table in <MATLAB>\bin\win32\blas.spec.

3 MATLAB 6.1 Release Notes

3-22

Using Another BLAS
You may also use BLAS from other sources than the ones shipped with
MATLAB, provided they are in the correct format. This format is a shared
library (as opposed to a static library) that exports all the double-precision
(starting with d) and double-precision complex (starting with z) BLAS routines
from dasum to zupmtr. On HP, IBM_RS, and WIN32, the symbols must be
exported without trailing underscores, while for ALPHA, GLNX86, SGI, and
SOL2, the symbols must be exported with trailing underscores (e.g., dgemm_).

If the shared library you provide also includes LAPACK symbols like dgefa (or
dgefa_), then they will override the MATLAB default implementation, which
is based on the Fortran LAPACK from Netlib at http://netlib.org.

Upgrading from an Earlier Release

3-23

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from MATLAB
6.0 (Release 12.0) to MATLAB 6.1 (Release 12.1). This section about upgrading
from an earlier release is organized into the following subsections:

• “Development Environment Issues” on page 3-23

• “Mathematics Issues” on page 3-24

• “Programming and Data Types Issues” on page 3-26

• “Graphics Issue” on page 3-27

• “External Interfaces/API Issues” on page 3-27

For information about upgrading from an earlier version than MATLAB 6.0,
see “Upgrading from an Earlier Release” on page 4-42 in the MATLAB 6.0
Release Notes.

Development Environment Issues

subscribe Function No Longer Supported
The subscribe function is no longer supported.

Command History, Preferences, and Favorites
If you uninstall Release 12.0, you will lose the Command History, preferences,
and Help browser favorites from Release 12.0.

To keep these files for use in Release 12.1, make a copy of them before
uninstalling Release 12. To see where the files are located, run prefdir in the
Command Window. The relevant files are listed below.

Filename File For

cwdhistory.m Command Window history

history.m Command History

matlab.prf Preferences

matlab_help.hst Help browser favorites

3 MATLAB 6.1 Release Notes

3-24

After uninstalling Release 12, put your backup copy of the files in the location
returned by prefdir so that Release 12.1 can use the files.

Help Browser Favorites
If you use favorites you created for the documentation in the Release 12.0 Help
browser, those favorites may point to an incorrect or invalid location in Release
12.1. You will need to delete any invalid favorites and add those favorites
again.

Source Control
If you use Microsoft Visual SourceSafe with the MATLAB source control
features, you now need to specify the login information for SourceSafe using
preferences. Select File -> Preferences -> General -> Source Control from the
desktop. Specify the Username, Password, and Database.

Mathematics Issues

Finding Smallest Magnitude Eigenvalues
eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based on
sigma. For sigma = 'sm', eigs returns the smallest magnitude eigenvalues.

In MATLAB 6.0, eigs was reimplemented to use the ARPACK library of
routines. Unfortunately, the smallest magnitude case, sigma = 'sm' and
sigma = 0, chose the wrong algorithm. For MATLAB 6.1, the correct ARPACK
algorithm is used and convergence is much quicker.

This bug fix introduces a backwards incompatibility. When A is a function Afun
and sigma = 'sm', Afun must now return Y = A\x. Prior to MATLAB 6.1, eigs
required Afun to return y = A*x for this case.

Possible Changes in Results Returned by Matrix Functions
Starting in MATLAB 6.0 (R12.0), matrix computations are based on LAPACK,
a large, multiauthor Fortran subroutine library for numerical linear algebra.
While this change has many benefits and matrix functions continue to operate
in the same way in MATLAB 6.0, the results returned by matrix functions may
differ. Changes in roundoff errors can be seen in most matrix computations. In
cases where quantities are not uniquely determined mathematically, results
may differ in order and in normalization.

Upgrading from an Earlier Release

3-25

For example:

• Eigenvalues may be returned in a different order.

• Eigenvectors may be normalized differently.

• The signs of columns of orthogonal matrices may differ.

• rcond is a better estimate of the reciprocal condition.

• lu can now be used to factor rectangular full matrices.

Obsolete Input Arguments
Certain input arguments to these functions have become obsolete. Using these
arguments does not result in an error, but they are ignored.

Obsolete Functions
The following MATLAB function has become obsolete. For backwards
compatibility, it has not been removed from the language at this time.
However, this function may be removed in a future release, and you are
encouraged to discontinue its use, or use the function that replaces it

Function Description

delaunay Now ignores the third argument fuzz, which
specified a value for the fuzz standard deviation.

Now ignores the third argument 'sorted'. This
argument indicated to delaunay that the given points
x and y were sorted, and that duplicate points had
been eliminated.

convhull Now ignores the third argument TRI, which provided
triangulation data previously computed using
delaunay.

3 MATLAB 6.1 Release Notes

3-26

.

Programming and Data Types Issues

Output from Background and Foreground Commands (UNIX)
In Release 12 on UNIX platforms, a background command (i.e., any system
command after which you add a &), such as

! cat startup.m &

no longer produces any output. Prior to Release 12, a background command
sent output to the command window.

If you need to see the output from a command, either do not make the command
a background command (i.e., remove the &), or run the background command
in a separate xterm. To start another xterm, issue the following command.

! xterm &

In Release 12, foreground functions (i.e., nonbackground functions) send their
output to the diary, if the diary function has been issued. The output is also
displayed in the command window (prior to Release 12, foreground function
output was only displayed in the command window).

matlab_helper Process
To make the ! and unix commands operate more efficiently, in Release 12
MATLAB creates a secondary process, called matlab_helper, at startup.

This matlab_helper contains those elements of MATLAB necessary to run the
! and unix commands.

Function Description

bvpval Evaluate the numerical solution of a boundary value
problem (BVP). Replace with deval, which evaluates
the solution of both initial value and boundary value
differential equation problems.

Upgrading from an Earlier Release

3-27

Graphics Issue

MATLAB No Longer Supports Terminal Mode
MATLAB no longer runs on nongraphics computer terminals.

External Interfaces/API Issues

Concatenation of Java Objects
When you concatenate Java objects, the class of the resultant object depends
on the classes of the input objects, as follows:

• If the input objects are of the same class, MATLAB makes the output object
of that class. This was true in Version 6.0 as well.

• If the input objects are of different classes, but all inherit from a common
class, MATLAB makes the output object of the common parent class.
MATLAB selects the lowest common parent in the Java class hierarchy as
the output class. This is new behavior for Version 6.1.

For example, concatenating objects of classes java.lang.Integer and
java.lang.Double creates a new object of class java.lang.Number.

• If the input objects are of different and unrelated classes, then MATLAB
makes the output object of the java.lang.Object class. This was true in
Version 6.0 as well.

Obsolete Fortran MX, MEX, MAT, and ENG Functions
The following Fortran MX, MEX, MAT, and ENG functions are considered to
be obsolete as of Version 6.1. Support for these functions may be removed from
a future MATLAB release.

Table 3-5: Obsolete Fortran MX Functions

mxCreateFull mxFreeMatrix

mxIsFull mxIsString

3 MATLAB 6.1 Release Notes

3-28

Table 3-6: Obsolete Fortran MEX Functions

mexGetEps mexGetGlobal

mexGetFull mexGetInf

mexGetMatrix mexGetMatrixPtr

mexGetNaN mexIsFinite

mexIsInf mexIsNaN

mexPutFull mexPutMatrix

Table 3-7: Obsolete Fortran MAT Functions

matDeleteMatrix matGetFull

matGetMatrix matGetNextMatrix

matGetString matPutFull

matPutMatrix matPutString

Table 3-8: Obsolete Fortran Engine Functions

engGetFull engGetMatrix

engPutFull engPutMatrix

Known Software and Documentation Problems

3-29

Known Software and Documentation Problems
This section updates the MATLAB 6.1 documentation set, reflecting known
MATLAB 6.1 software and documentation problems. It is organized into the
following subsections:

• “Development Environment Problems” on page 3-29

• “Documentation Updates” on page 3-30

Development Environment Problems

Displaying Results From lookfor Function
When you run the lookfor function, press Ctrl+C to display the results in the
command window.

Many Open Windows Can Cause a Crash or Hang (Windows 98/Me)
On Microsoft Windows 98/Me platforms, if you keep many windows open,
MATLAB may crash or hang. For example, if you keep open 12 Stateflow
windows, or 25 figure windows, or 50 Simulink windows, you may experience
this problem. Note that these numbers are only estimates; the actual number
of open windows that may cause this problem depends on the resources
currently in use by other components and applications.

Cannot Go To Top Level of UNC Path
For Windows platforms, you cannot use cd or any directory tool in the
MATLAB desktop (including the Current Directory browser and Set Path
dialog box) to access the top level of a UNC path.

Workspace Browser with Many Variables
If there are many variables in the workspace and the Workspace browser is
open, you may experience performance problems. If you expect to have more
than 1000 variables in the workspace, close the Workspace browser to avoid
performance problems.

UNIX Display Problems When UNIX Client and Server Platforms Differ
If you use MATLAB on UNIX and the platform for the server is different than
that for the client, there may be problems with the display of graphics on the

3 MATLAB 6.1 Release Notes

3-30

client. See the Technical Support Web page for a solution that lists the
combinations tested and any known display problems with them.

Sun Solaris 16-Bit Display Not Supported
Sun's Java VM for Solaris does not support 16-bit displays. Therefore you
cannot use this configuration with Release 12. Use another display mode
instead.

Sun Solaris Arrow Keys Not Working
On some Sun Solaris systems, the arrow keys on the main keyboard are not
working properly. Instead, try the arrow keys in the numeric keypad.

Alpha Shortcut Problems When Using Emacs Key Bindings in Editor
On the Alpha platform, if you set the Editor/Debugger preference for key
bindings to Emacs, the shortcuts for Undo (Ctrl+_) and Copy (~+W) do not
work.

Display Problems with Xoftware
If you use Xoftware on a PC to run MATLAB on a UNIX platform, you need to
do the following to avoid display problems:

1 Go to the Xoftware Control Panel.

2 From the Options menu, select Configuration.

3 Select the Window tab.

4 From the Options listing, select Concurrent Window Manager.

5 Under Settings, select Off.

6 Click OK.

Documentation Updates

Editor/Debugger Example - Graphic and Information Incorrect
In the printed book Using MATLAB (Version 6), on page 7-19, the graph shown
is incorrect. For the correct graph, see the same page in the Help browser at

Known Software and Documentation Problems

3-31

MATLAB -> Using MATLAB -> Development Environment -> Editing and
Debugging M-Files -> Debugging M-Files -> Trial Run for Example.

On page 7-29, in “Correcting Problems and Ending Debugging, Completing the
Example,” step 3 is incorrect. It should instead read “In collatzplot.m line 12,
change the string plot_seq to seq_length(m) and save the file.”

interp1 Extrapolation of Out-of-Range Values
A new argument enables interp1 to perform extrapolation for out-of-range
values for all methods. It also enables you to specify a scalar to be returned for
out-of-range values.

The PDF version of the interp1 reference page incorrectly states that the
default for all methods is for interp1 to perform extrapolation for out-of-range
values. In fact, interp1 performs extrapolation as the default only for the
'spline', 'pchip', and 'cubic' methods. For all other methods, it returns NaN
for out-of-range values. This behavior is unchanged from Version 5.

The HTML reference page for interp1 is correct.

3 MATLAB 6.1 Release Notes

3-32

4
MATLAB 6.0 Release
Notes

New Features 4-2
Development Environment Features 4-2
Mathematics Features 4-11
Programming and Data Types Features 4-22
Graphics Features 4-26
3-D Visualization Features 4-30
External Interfaces/API Features 4-33
Creating Graphical User Interfaces – Features 4-39

Major Bug Fixes 4-41
Figure KeyPressFcn 4-41

Upgrading from an Earlier Release 4-42
Development Environment Issues 4-42
Programming and Data Types Issues 4-42
External Interfaces/API Issues 4-52
Creating Graphical User Interfaces – Upgrade Issues 4-57

Known Software and Documentation Problems 4-58
Development Environment Problems 4-58
External Interfaces/API Problems 4-60
Graphics Problems 4-61
GUIDE Problems 4-61
Documentation Updates 4-61

4 MATLAB 6.0 Release Notes

4-2

New Features
This section introduces the new features and enhancements added in MATLAB
6.0 since MATLAB 5.3 (Release 11.0).

This section about new features is organized into the following subsections:

• “Development Environment Features” on page 4-2

• “Mathematics Features” on page 4-11

• “Programming and Data Types Features” on page 4-22

• “Graphics Features” on page 4-26

• “3-D Visualization Features” on page 4-30

• “External Interfaces/API Features” on page 4-33

• “Creating Graphical User Interfaces – Features” on page 4-39

Development Environment Features
This section includes

• “MATLAB Desktop” on page 4-2

• “New Online Help” on page 4-6

• “Toolbox Path Cache Reduces MATLAB Startup Time” on page 4-7

• “Import Wizard” on page 4-8

• “Development Environment Functions” on page 4-9

MATLAB Desktop
MATLAB has a new environment called the MATLAB desktop, containing
tools (graphical user interfaces) for managing files, variables, and applications
associated with MATLAB. Think of the desktop as your MATLAB dashboard.
The first time MATLAB starts, the desktop appears as shown in the following

4-3

illustration, although your Launch Pad may contain different entries. You can
change the way your desktop looks by opening, closing, and moving tools.

If you prefer a command line interface, you can use functions to perform most
of the features found in the MATLAB desktop tools.

View or change
current
directory

View or use previously run functions

Enter
MATLAB
functions

Close window

Drag the separator bar to resize windows

Click to move window
outside of desktop

Get help

Expand to view
documentation, demos,
and tools for your products

Use tabs to go to Workspace browser
or Current Directory browser

4 MATLAB 6.0 Release Notes

4-4

The following tools are managed by the MATLAB desktop, but not all of them
appear by default when you first start.

Tool Purpose Major New Features

Command
Window

Run MATLAB functions. • Context menu to evaluate,
open, or get help for a
selection

• Tab completion for
function names

• Syntax highlighting

Command
History

View a log of the functions
you entered in the
command window, copy
them, and execute them.

New tool

Launch Pad Easily run tools and access
documentation for all your
MathWorks products.
Expand a listing to show
the documentation, demos,
and tools for that product.

New tool

Help
browser

View and search the
documentation for the
MATLAB full product
family, as described in
“New Online Help” on page
4-6.

New user interface that
replaces the Help Desk

Current
Directory
browser

View MATLAB files and
related files. Perform file
operations such as open
files, and find and replace
strings in a file.

New tool

4-5

To see how many of these new features work, select Demos from the Help
menu in the desktop. The playback demos run in your system’s Web browser
and illustrate the main features of the new interfaces and tools. The playback
demos run faster on Windows platforms than they do on UNIX.

Workspace
browser

View and make changes to
the contents of the
workspace.

• Interface to the Import
Wizard

• Graph data for a variable
using the context menu

Array
Editor

View array contents in a
table format and edit the
values.

• Change the display format
for variables

• Allow strings and cell
arrays of strings

Editor/
Debugger

Create, edit, and debug
M-files (files containing
MATLAB functions).

• Show line numbers

• Comment or uncomment a
selection (multiple lines)

• Change colors used for
syntax highlighting

• Search through multiple
files at once for a specified
phrase

• Option for MATLAB to
start a session and open
files that were open at
shutdown of the previous
session

• Option to view datatips in
edit mode

• Breakpoints are
maintained when a file is
saved.

Tool Purpose Major New Features

4 MATLAB 6.0 Release Notes

4-6

Other MATLAB tools are not managed by the desktop, such as figure windows,
toolbox graphical user interfaces, and the following development environment
tools.

New Online Help
Release 12 provides almost all the documentation in online form in HTML (a
few products’ online documentation is in PDF form only). The online
documentation is at least as up-to-date as any printed documentation shipped
with the product, and in several cases is more up-to-date.

Tool Purpose Major New Features

Set Path
dialog box

View and change the
MATLAB search path.

A modified version of the
Path Browser user interface

Import
Wizard

Load binary or text data
into the MATLAB
workspace.

Graphical user interface to
the MATLAB import
functions. See “Import
Wizard” on page 4-8 for more
information.

M-File
Profiler

Measure where an M-file is
spending its time to help
you make speed
improvements.

Now supports scripts

Source
Control
Interface

Access your source control
system from within
MATLAB, Simulink, and
Stateflow.

New tool

Notebook Access the MATLAB
numeric computation and
visualization software from
within a word processing
environment (Microsoft
Word).

Supports Word 2000

4-7

New Help Browser. Release 12 includes its own Help browser, which allows you
to access the online documentation similarly to how you do with Microsoft’s
HTML Help and Sun’s Java Help interfaces. However, the Help browser has
been customized to work even more effectively with the whole MATLAB
product family. The access methods (via tabs) include

• An expandable/collapsible table of contents, organized by products

• An index

• A search facility, including a full-text search, as well as searches for word(s)
in documentation section titles, function names, or even the Technical
Support online knowledge base (via the Web)

Other features include saving favorites (bookmarks) and being able to execute
code examples in the online documentation by highlighting the text and using
a right-click context menu.

You can print out copies of the documentation by accessing PDF versions of the
documentation. For Windows platforms, PDF files are on the Documentation
CD.

See “Getting Help” in the MATLAB documentation for complete instructions.

Context-Sensitive Help. For several products, you can access context-sensitive
help via Help menus, Help buttons, or from a right-click context menu.

Toolbox Path Cache Reduces MATLAB Startup Time
If you run MATLAB from a network server, you can significantly reduce your
startup time by using the new toolbox path cache feature. The toolbox path
cache stores path information on all toolbox directories under the MATLAB
root directory. During startup, MATLAB obtains this information from the
cache rather than by reading it from the remote file system.

The toolbox path cache is used only during the startup of your MATLAB
session. It is especially useful if you define your MATLAB path to include many
toolbox directories. It takes considerable time to acquire all of this information
by scanning directories in the remote file system. Reading it from a
pregenerated cache however, is significantly faster. If you have a short toolbox
path, there is less benefit to using the cache, but it does still provide a time
savings.

4 MATLAB 6.0 Release Notes

4-8

When you first install MATLAB, the toolbox path cache must be generated by
the system administrator and enabled on those systems for which it is needed.
The MATLAB Preferences dialog box has a new Toolbox Caching panel that
assists you in generating and enabling the cache.

See “Reducing Startup Time with Toolbox Path Caching” in the “Development
Environment” of the MATLAB documentation for more information.

Import Wizard
The easiest way to import ASCII text data or binary data into the workspace is
to use the new MATLAB Import Wizard. To use the Import Wizard, follow
these steps:

1 Start the Import Wizard, by choosing the Import Data option on the
MATLAB command window File menu. The Import Wizard displays a file
selection dialog box. Specify the file that contains the data you want to
import.

2 The Import Wizard opens the file, processes the data in the file, and displays
a preview of the variable (or variables) it has created from the data in the
file. If the file contains multiple variables, you can select the variables you
want to import. Click Finish to import the data into the workspace.

The Import Wizard can process many types of data formats automatically, such
as images, sound files, and spreadsheets. The Import Wizard can also process
text data files that use commas, spaces, tabs or semicolons as delimiters. (The
delimiter, also known as a column-separator, is the character used to separate
the individual data items in text data file.) The Import Wizard can process
other text files if you specify the delimiter used in the file.

The following table lists the types of data you can import using the Import
Wizard.

Data Types File Extension

ASCII text data .txt, .dat, .dlm, and others

Audio Video Interleaved (AVI) format .avi

CompuServe Graphics Interchange
format

.gif

4-9

Development Environment Functions
This section lists the new and changed development environment functions.

New Development Environment Functions. The functions listed in the
following table are new in MATLAB 6.0.

Cursor format .cur

HDF raster image .hdf

Icon .ico

JPEG .jpg, .jpeg

MATLAB MAT-file .mat

Portable Network Graphics .png

Sound files .wav, .au, .snd

Spreadsheet .csv, .xls, .wk1

Zsoft Paintbrush .pcx

Function Description

checkin Check files into your source control system from
MATLAB, Simulink, and Stateflow.

checkout Check files out of your source control system into
MATLAB, Simulink, and Stateflow.

cmopts Get the name of the source control system being
used with MATLAB.

customverctrl Integrate a version control system not supported
with MATLAB.

Data Types File Extension (Continued)

4 MATLAB 6.0 Release Notes

4-10

Development Environment Functions That Changed. The functions listed in
the following table have been changed since MATLAB 5.2 (Release 11).

filebrowser Display the Current Directory browser, a tool for
viewing files in the current directory and performing
file operations.

helpbrowser Display the MATLAB Help browser, which provides
access to extensive online help.

undocheckout Undo the previous checkout from the source control
system.

Function Description of Change

dbstop The function dbstop if error no longer stops
execution on errors detected within a try...catch
block. MATLAB does not enter debug mode under
these circumstances.

Use the new form of the function, dbstop if all
error to stop execution and enter debug mode on all
types of errors, including those detected within a
try...catch.

doc Displays documentation in the Help browser instead
of in the Help Desk. If an HTML reference page for a
function does not exist, it displays M-file help in the
Help browser.

docopt Is now only used for:

• The web function, if the -browser option is used for
UNIX platforms

• The IBM and HP platforms

Function Description (Continued)

4-11

Mathematics Features
The following mathematics features have been added or enhanced in
MATLAB 6.0:

• Matrix computations

• N-dimensional Delaunay-type functionality

• Differential equations solvers

• Sparse matrices

• Fast Fourier transforms

• Quadrature

• Function functions

• Basic Fitting interface

• Data Statistics interface

helpdesk Displays the Help browser instead of the Help Desk.
In a future release, the helpdesk function will be
phased out.

helpwin Function listings and descriptions appear in the Help
browser instead of in a specialized window.

pathtool Opens the new Set Path dialog box instead of the
Path Browser.

version Now has a -java flag, which displays the version of
Java used by MATLAB.

web By default, displays the specified URL in the Help
browser. Now includes the -browser flag, which
displays the specified URL in your system’s default
Web browser.

Function Description of Change (Continued)

4 MATLAB 6.0 Release Notes

4-12

These features are described below. At the end of this section are tables that
summarize changes to the MATLAB math functions:

• New functions

• Functions with new or changed capabilities

See “Upgrading from an Earlier Release” on page 4-42 for information about
obsolete functions.

Matrix Math in MATLAB 6.0
Matrix computations in MATLAB 6.0 are based on LAPACK, a large,
multiauthor Fortran subroutine library for numerical linear algebra. LAPACK
extends the MATLAB matrix computation capabilities and increases its speed
on larger problems. It offers MATLAB a larger class of algorithms from which
to choose based on the properties of the matrix arguments. Optimized Basic
Linear Algebra Subroutines (BLAS), on all MATLAB platforms, speeds up
matrix multiplication and the LAPACK routines themselves. Optimized BLAS
is provided by Automatically Tuned Linear Algebra Software (ATLAS).

The LAPACK Users’ Guide, Third Edition, is available online at http://
www.netlib.org/lapack/lug/lapack_lug.html.

Differing Results. Matrix functions in earlier versions of MATLAB continue to
operate in the same way in MATLAB 6.0, but the results they return may
differ. Changes in roundoff errors can be seen in most matrix computations. In
cases where quantities are not uniquely determined mathematically, results
may differ in order and in normalization.

For example:

• Eigenvalues may be returned in a different order.

• Eigenvectors may be normalized differently.

• The signs of columns of orthogonal matrices may differ.

• rcond is a better estimate of the reciprocal condition.

• lu can now be used to factor rectangular full matrices.

4-13

Increased Number of Eigenvalue Algorithms. With MATLAB 6.0, there are now eight
different eigenvalue algorithms, determined by

• eig(A) or eig(A,B)

• Real or complex matrices

• Symmetric/Hermitian matrices and B, if any, positive definite

• Whether eigenvectors are requested or not

For the symmetric and Hermitian problems, the eigenvalues are real, sorted in
increasing order and the eigenvectors are normalized so that

V'*V or V'*B*V = I

New Decompositions for Real Matrices. The QZ algorithm returns a newly available
real decomposition for real matrices. If A and B are real and not symmetric,

[AA,BB,...] = qz(A,B,'real')

returns a real triangular matrix BB and a real quasitriangular matrix AA with
2-by-2 diagonal blocks corresponding to pairs of complex conjugate
eigenvalues. Earlier versions of MATLAB produced complex triangular AA and
BB if there were any complex eigenvalues. You can continue to obtain this
behavior with either

[AA,BB,...] = qz(A,B)

or

[AA,BB,...] = qz(A,B,'complex')

A similar option for the Schur decomposition of a real matrix

T = schur(A,'complex')

produces a complex decomposition if A has any complex eigenvalues.

The flops Function. The incorporation of LAPACK makes it impractical to count
floating-point operations. As a result, the flops function is inoperative in
MATLAB 6.0. It will be discontinued completely in some future version.

With modern computer architectures, floating-point operation counts are no
longer a good predictor of execution time. Counts of memory references and
cache usage patterns have become more important.

4 MATLAB 6.0 Release Notes

4-14

N-Dimensional Delaunay-Type Functionality
New Qhull-based functions extend Delaunay-type functionality:

• delaunayn and delaunay3 for N-dimensional Delaunay tessellation

• convhulln N-dimensional convex hull

• voronoin for N-dimensional Voronoi diagrams

• griddatan and griddata3 for data gridding and hyper-surface fitting

Differential Equation Solvers
New differential equation solvers expand the capabilties of MATLAB:

• bvp4c solves two-point boundary value problems for ODEs by collocation.
Supporting functions enable you to set options that affect problem solution,
form an initial guess, and evaluate the numerical solution obtained with
bvp4c.

• pdepe solves initial-boundary value problems for parabolic-elliptic PDEs in
1-D. A supporting function enables you to evaluate the numerical solution
obtained with pdepe.

The ODE solvers now take advantage of function handles and can solve
problems without using ODE files. The new syntax is

solver(@odefun,tspan,y0,options,p1,p2,...)

where @odefun, tspan and y0 are required arguments. See the ODE solver and
odeset reference pages for details.

MATLAB 6.0 supports use of an ODE file for backwards compatibility, but new
functionality is available only with the new syntax.

4-15

Sparse Matrix Computations
New and upgraded routines provide new capabilities and speed up
computations:

• eigs and svds now use the Fortran library ARPACK.

• New routines, symmlq, minres and lsqr, iteratively solve symmetric
indefinite systems and least squares problems.

• New routines, colamd and symamd, provide approximate minimum degree
permutations to help reduce the fill-in of their sparse factors.

• condest can now produce more accurate condition estimates.

Fast Fourier Transforms
Fast Fourier transform (FFT) functions now rely on the MIT FFTW library.
This results in faster performance for composite, prime, and large prime factor
array lengths.

Quadrature
New quadrature algorithms in quad and the new function quadl are faster,
more accurate and more robust in that they handle singularities better. quadl
replaces the now obsolete quad8 function.

Interpolation
A new one-dimensional interpolation function, pchip, based on piecewise cubic
Hermite interpolating polynomials, preserves the shape and monotonicity of
the underlying data.

Function Functions
All function functions are now capable of accepting function handles as
arguments. Most also accept additional parameters, which they pass to the
function that you pass in as an argument.

For information about function handles, see the function_handle (@),
func2str, and str2func reference pages, and the Function Handles section of
“Programming and Data Types” in the MATLAB documentation.

4 MATLAB 6.0 Release Notes

4-16

The Basic Fitting Interface
MATLAB supports curve fitting through the Basic Fitting interface. Using this
interface, you can quickly perform many curve fitting tasks within the same
easy-to-use environment. The interface is designed so that you can

• Fit data using a spline interpolant, a hermite interpolant, or a polynomial up
to degree 10.

• Plot multiple fits simultaneously for a given data set.

• Plot the fit residuals.

• Examine the numerical results of a fit.

• Evaluate (interpolate or extrapolate) a fit.

• Annotate the plot with the numerical fit results and the norm of residuals.

• Save the fit and evaluated results to the MATLAB workspace.

Depending on your specific curve fitting application, you can use the Basic
Fitting interface, the command line functionality such as polyfit and
polyval, or both.

The Data Statistics Interface
MATLAB has a new visual interface that:

• Calculates basic statistics about the central tendency and variability of data
plotted in a graph

• Lets you save the statistics to the workspace

• Lets you plot any of the statistics in a graph

When you select Data Statistics from the MATLAB figure window Tools
menu, MATLAB calculates the statistics for each data set plotted in the graph
and displays the results in a Data Statistics dialog box. To plot a statistic in a
graph, click in the check box next to its value. To save a set of statistics as a
workspace variable, click on the Save to workspace... button. The Data
Statistics tool saves the statistics as a structure. The following figure shows the
components of this dialog box.

4-17

Math Function Summary Tables
This section summarizes

• New math functions

• Functions with new or changed capabilities

For more information on these functions, see their respective reference pages
or type

help function

in the MATLAB command window, where function is the name of the function
about which you want to obtain more information.

Note See “Upgrading from an Earlier Release” on page 4-42 for information
about obsolete functions.

Identifies the figure in which the data is plotted.

To add a plot of a statistic to
a graph, click in the check
box next to the value.

Lists the statistics calculated
for both the x- and y-data
that define the plot.

Click here to create workspace variables of the statistics.

Identifies the data set for
which statistics have been
calculated.

4 MATLAB 6.0 Release Notes

4-18

New Math Functions

Function Purpose

bvp4c Solve two-point boundary value problems (BVPs) for
ODEs by collocation

bvpget Extract an option from the BVP options structure

bvpinit Form the initial guess for bvp4c

bvpset Create/alter BVP options structure

bvpval Evaluate the solution computed by bvp4c

colamd Column approximate minimum degree permutation

convhulln N-dimensional convex hull

delaunay3 Three-dimensional Delaunay tessellation

delaunayn N-dimensional Delaunay tessellation

dsearchn N-dimensional nearest point search

griddata3 Data gridding and hyper-surface fitting for 3-D data

griddatan Data gridding and hyper-surface fitting (dimension >= 2)

lsqr LSQR implementation of Conjugate Gradients on the
Normal Equations

minres Solve a system of equations using Minimum Residual
Method

pchip Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) – preserves monotonicity and the shape of the
data. pchip is used by interp1(x,y,xi,'cubic')

pdepe Solve initial-boundary value problems for
parabolic-elliptic partial differential equations (PDEs) in
one dimension

pdeval Evaluate by interpolation the solution computed by pdepe

4-19

quadl Numerically evaluate an integral using adaptive Lobatto
quadrature

symamd Symmetric approximate minimum degree permutation

symmlq Solve a system of equations using symmetric LQ method

voronoin Compute N-dimensional Voronoi diagram

Math Functions with New or Changed Capabilities

Function Purpose

condest [c,v] = condest(A,t) specifies a new argument, t, a
positive integer equal to the number of columns in an
underlying iteration matrix. Increasing the number of
columns usually gives a better condition estimate but
increases the cost. The default is t = 2, which almost
always gives an estimate correct to within a factor 2.

dblquad dblquad now accepts extra arguments p1,p2,... which it
passes to fun. For example,

dblquad(fun,xmin,xmax,ymin,ymax,tol,...
@quadl,p1,p2,...)

eig For symmetric A and symmetric positive definite B,
eig(A,B,'chol') computes the generalized eigenvalues of
A and B using the Cholesky factorization of B. 'chol' is the
default.

eig(A,B,'qz') ignores the symmetry, if any, and uses the
QZ algorithm.

New Math Functions (Continued)

Function Purpose

4 MATLAB 6.0 Release Notes

4-20

eigs Now provides an interface to a subset of the ARPACK
capabilities. See the eigs reference page for information
about the expanded syntax, and the sigma and options
arguments. The MATLAB 5 arbitrary ordering of the
inputs B, k, sigma, and options is no longer allowed.

fftshift,
ifftshift

fftshift(X,dim) and ifftshift(X,dim) can now apply
the shift operation along the dimension specified by dim.

fminbnd,
fminsearch,
fzero,
lsqnonneg

A new Display options parameter value, 'notify',
displays output only if the function does not converge. For
these functions, 'notify' is the default.

fzero MATLAB Version 5 changed the calling sequence for
fzero. See the instructions for converting your code in
“Function Functions” in the MATLAB documentation.

gallery Two new options produce these test matrices:

'randcolu' – Random matrix with normalized columns
and specified singular values

'randcorr' – Random correlation matrix with specified
eigenvalues

interp1 interp1(x,y,xi,'cubic') and
interp1(x,y,xi,'pchip') use pchip to perform the
interpolation. A new flag 'v5cubic' provides the cubic
interpolation used in MATLAB 5. The default method is
'linear'.

interp1(x,y,xi,method,'extrap') uses the specified
method to extrapolate any element of xi that is outside the
interval spanned by x.

interp1(x,y,xi,method,extrapval) returns the scalar
extrapval for out of range values.

Math Functions with New or Changed Capabilities (Continued)

Function Purpose

4-21

lu lu(X) can now be used to factor rectangular matrices.

ode45,
ode23,
ode113,
ode15s,
ode23s,
ode23t,
ode23tb

The ODE solvers can now solve problems without the use
of an ODE file. Problem components are passed to the
solvers directly as arguments, or provided using
parameters in an options structure. See the ODE solvers
and odeset reference pages for details.

MATLAB 6.0 supports use of an ODE file for backwards
compatibility, but new functionality is available only in the
new syntax.

polyval,
polyfit

An optional output argument for polyfit and an optional
input argument to polyval provide for centering and
scaling, that is, subtracting the mean and normalizing the
standard deviation of the independent variable.

quad quad(fun,a,b) uses a new default tolerance, 10-6.

Because of the use of new quadrature algorithms, your
results (q) and the number of function evaluations
(trace(1) = fcnt) may differ from MATLAB 5. The new
algorithm provides more accurate results and generally
result in improved performance.

qz For real A and B, [AA,BB,Q,Z,V] = qz(A,B,'real')
produces a real decomposition with a quasitriangular AA.

[AA,BB,Q,Z,V] = qz(A,B,'complex') produces a possibly
complex decomposition with a triangular AA.

schur For real X, schur(X,'real') has the real eigenvalues on
the diagonal and the complex eigenvalues in 2-by-2 blocks
on the diagonal. schur(X,'complex') is triangular and is
complex if X has complex eigenvalues.

Math Functions with New or Changed Capabilities (Continued)

Function Purpose

4 MATLAB 6.0 Release Notes

4-22

Programming and Data Types Features

MATLAB Interface to Java
MATLAB 6.0 provides an interface to Java that enables you to create objects
from Java classes and call methods on those objects. You can use existing Java
classes or create your own. See “MATLAB Interface to Java” on page 4-33 for a
summary of this feature. See “Calling Java from MATLAB” under “External
Interfaces/API” in the online help, for full documentation.

Function Handles
The MATLAB language has a new data type called the function handle. You
can create a handle to any MATLAB function and then use that handle as a
means of referencing the function. A function handle is typically passed in an
argument list to other functions, which can then execute, or evaluate, the
function using the handle.

A MATLAB function handle is more than just a reference to a function. It often
represents a collection of function methods, overloaded to handle different
argument types. When you create a handle to a function, MATLAB takes a
snapshot of all built-in and M-file methods of that name that are on the
MATLAB path and in scope at that time, and stores access information for all
of those methods in the handle.

When it comes time to evaluate the function handle, MATLAB considers only
those functions that were captured within the handle when it was created. It

sort sort(S) now works on other data types, for example
int32, and has been rewritten to be faster on doubles.
sort(S,dim) can now sort the elements of both full and
sparse matrices along the dimension specified by dim.

sqrtm [X, alpha, condest] = sqrtm(A) returns a stability
factor alpha and an estimate condest of the matrix square
root condition number of X.

std std([]) no longer returns empty. It now returns NaN, and
a message, Warning: Divide by zero.

Math Functions with New or Changed Capabilities (Continued)

Function Purpose

4-23

is the combination of which functions are in the handle and what arguments
the handle is evaluated with that determines which is the actual function that
MATLAB dispatches to.

Function handles enable you to do all of the following. Each of these items is
explained in more detail in “Benefits of Using Function Handles” in the online
documentation:

• Pass function access information to other functions

• Capture all methods of an overloaded function

• Allow wider access to subfunctions and private functions

• Ensure reliability when evaluating functions

• Reduce the number of files that define your functions

• Improve performance in repeated operations

• Manipulate handles in arrays, structures, and cell arrays

You construct a function handle in MATLAB using the at sign, @, before the
function name. The following example creates a function handle for the humps
function and assigns it to the variable fhandle.

fhandle = @humps;

You pass the handle in the same way you would pass any argument. This
example passes the function handle just created to fminbnd, which then
minimizes over the interval [0.3, 1].

x = fminbnd (fhandle, 0.3, 1)
x =
 0.6370

The fminbnd function evaluates the @humps function handle using the
MATLAB feval function.

For more information, see “Function Handles” under “Programming and Data
Types,” in the MATLAB documentation.

4 MATLAB 6.0 Release Notes

4-24

Functions That Operate on Function Handles
The following MATLAB functions now operate on the function handle data
type. The func2str, functions, and str2func functions are new to the
MATLAB language.

CONTINUE Flow Control Statement
The continue statement passes control to the next iteration of the for or while
loop in which it appears, skipping any remaining statements in the body of the
loop. In nested loops, continue passes control to the next iteration of the for
or while loop enclosing it.

The example below shows a continue loop that counts the lines of code in the
file, magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) | strncmp(line,'%',1)
 continue
 end
 count = count + 1;
end
disp(sprintf('%d lines',count));

Function Purpose

feval Evaluate a function through its handle

func2str Construct a function name string from a function handle

functions Display information about a function handle

isa Determine if an object is a function handle

isequal Compare function handles for equality

str2func Construct a function handle from a function name string

4-25

New MATLAB Programming-Related Functions
The following programming-related functions are new in this release.

Creating an Object That Inherits from Parent Classes Only
In MATLAB 5, the class function allows you to create a new object that
inherits fields and methods from one or more parent classes. However, this new
object acquires additional fields that belong to the structure_name argument
passed in the call to class.

The syntax for this command is

obj = class(structure_name,'class_name',parent1,parent2...)

In MATLAB 6.0, you can create a new object that contains no fields other than
those that are inherited from the specified parent objects. Do this using the
following syntax.

obj = class(struct([]),'class_name',parent1,parent2,...)

Code Length Restriction Removed
There is now no limit on the length of a line of M-code.

Function Purpose

beep Make your computer beep

genpath Generate a path string that includes all directories below
a named directory

iskeyword Check if the input string is a MATLAB keyword

isvarname Check if the input string is valid variable name

nargoutchk Validate the number of output arguments

numel Returns the number of elements in an object

rehash Refresh function and file system caches

support Open the MathWorks Technical Support Web page

4 MATLAB 6.0 Release Notes

4-26

Running a Syntax Check on M-Files
You can run a check on the syntax of your M-files before executing the files; to
do so, use the following command.

check_syntactic_warnings

This command checks all M-files in the directories specified by the argument
list for all warnings that MATLAB generates when reading the M-file into
memory. All @class and private directories contained by the argument list
directories will also be processed; class and private directories should not be
supplied as explicit arguments to this function.

If no argument list is specified, all files on the MATLAB path and in the current
working directory will be checked, except those in toolboxes.

If the argument list is exactly '-toolboxes', all files on the MATLAB path and
in the current working directory will be checked, including those in toolboxes.

The following command displays the information given above.

help check_syntactic_warnings

This command can be especially helpful in locating missing separator
characters that are now required between array elements. See “Separators Are
Now Required Between Array Elements” on page 4-44.

Graphics Features
This section is organized into the following subsections:

• “Property Editor” on page 4-26

• “Printing Features” on page 4-28

Property Editor
MATLAB 6.0 has a new graphical user interface for editing the properties of
Handle Graphics objects in MATLAB figures. This tool, called the Property
Editor, provides access to many properties of the Handle Graphics objects in a
graph, including figures, axes, lines, lights, patches, images, surfaces,
rectangles, text, and the root object. Using this tool, you can change the
thickness of a line, add titles and axes labels, add lights, and perform many
other plot editing tasks.

The following figure shows the components Property Editor interface.

4-27

Starting the Property Editor
There are several ways to start the Property Editor.

If plot editing mode is enabled in the figure, you can start the Property Editor
by right-clicking on an object and selecting the Properties option from the
context menu. You can also start the Property Editor by double-clicking on an
object in the graph. (Double-clicking on a text object opens a text editing box
around the text but does not start the Property Editor.)

If plot editing mode is not enabled, you can start the Property Editor by
selecting either the Figure Properties, Axes Properties, or Current Object
Properties from the figure window Edit menu. These options automatically
enable plot editing mode, if it is not already enabled. You can also start the
Property Editor from the command line using the propedit function.

Use these buttons to move back and forth among the graphics objects you have edited.

Click here to view a list of
values for this field.

Click on a tab to view a
group of properties.

Check this box to see the
effect of your changes as
you make them.

Click OK to apply your
changes and dismiss the
Property Editor.

Use the navigation bar to select
the object you want to edit.

Click Cancel to dismiss the Property Editor
without applying your changes.

Click Apply to apply your changes without
dismissing the Property Editor.

Click Help to get information about
particular properties.

4 MATLAB 6.0 Release Notes

4-28

Note Once you start the Property Editor, you can keep it open throughout an
editing session. If you click on another object in the graph, the Property Editor
displays the set of panels associated with that object type. You can also use the
Property Editor’s navigation bar to select an object to edit.

Printing Features

Exporting Figures to the Clipboard. If you use the clipboard to export your figures to
graphics-format files, you can now use the Figure Copy Template
Preferences panel to optimize your figure. You can apply templates
specifically for Microsoft Word and PowerPoint, or you can customize your own
template.

Page Setup Dialog Box. The Page Setup dialog box now presents an enhanced set
of options on four tabs.

Tab Enables you to...

Size and
Position

• Print at screen size or set the size of the printed figure

• Set the top and left margins and the height and width of the
figure

• Fill the page, restore the aspect ratio, or center the figure

• Choose the units in which the settings are made

Paper • Choose the paper type or set a custom size

• Choose units

• Choose paper orientation

4-29

UNIX Print Dialog Box. The UNIX Print dialog box for MATLAB 6.0 has been
rewritten. It has many new features available both from the Print dialog box
and from a new Options dialog box:

• From the Print dialog box, you can now set the figure size, select a print
driver from a scroll list rather than typing it in, and set whether or not you
want MATLAB to rescale your axis and ticks limits when it prints your
graphic.

• The new Print Options dialog box, which launches from the Print dialog,
enables you to make many settings, including choosing a renderer and
setting the printer resolution.

Note Note that you can no longer set the paper orientation or the paper type
from the Print dialog box; you must use the Page Setup dialog box instead.

Preference that Controls Color or Black and White Printing. The Figure window
printing preference that enables you to set a session-to-session default for
sending either black and white or colored lines and text to printers is now
located on the General Preferences panel.

Note that if your figure does not print correctly in color or black and white
according to the figure setting, override the setting from the File/Preferences
menu. For example, if you specify printing lines and text in color to a color

Lines
and Text

Set the lines and text in the printed or exported figure to color
or black and white

Axis and
Figure

• Keep the same settings as are on the screen, or let MATLAB
rescale your axes ticks and labels

• Print or not print uicontrols that are part of the figure

• Keep the screen background color, or let MATLAB change
the background color to white

• Override the MATLAB default choice of renderer

Tab Enables you to... (Continued)

4 MATLAB 6.0 Release Notes

4-30

printer, and you don’t get your results in color, go to File/Preferences and
select Always send as color.

PaperSize Property. The figure property PaperSize is now writable. You can also
set the new '<custom>' paper type from the command line.

Note See “Basic Printing and Exporting” in the MATLAB graphics
documentation for more information about printing and exporting figures in
MATLAB Version 6.0.

3-D Visualization Features
The following table lists new and enhanced volume visualization functions
added in MATLAB 6.0.

Function Purpose

coneplot Create a 3-D coneplot

contourslice Draw contours in slice planes

curl Compute the curl and angular velocity
perpendicular to the flow of a 3-D vector
field

divergence Compute the divergence of a 3-D vector
field

interpstreamspeed Interpolate streamline vertices from speed

isocolors Compute the colors of isosurface vertices

isosurface Extract isosurface

streamparticles Draw stream particles from vector data

streamribbon Draw stream ribbons from vector data

streamslice Draw well-spaced stream lines from vector
data

4-31

Graphics Object Transparency
The transparency of an object determines the degree to which you can see
through the object’s surface and thereby see other objects that are obscured.
You can specify a continuous range of transparency from completely
transparent (i.e., invisible) to completely opaque (i.e., no transparency). You
can specify transparency properties for the following objects:

• Surface

• Patch

• Images

Transparency Properties. Transparency values, which range from [0 1], are
referred to as alpha values. MATLAB handles transparency in a way that is
analogous to how it handles color:

• Objects can define alpha data that is used as indices into the alphamap or
directly as alpha values.

• Objects can define a single face and edge alpha value or use flat or
interpolated transparency based on values in the figure’s alphamap.

• Axes define alpha limits that control the mapping of object data to alpha
values.

• Figures contain alphamaps, which are m-by-1 arrays of alpha values.

The following table summarizes the object properties that control
transparency.

streamtube Draw stream tubes from vector data

volumebounds Return coordinate and color limits for
volume data

Property Purpose

ALim Alpha axis limits

ALimMode Alpha axis limits mode

Function Purpose (Continued)

4 MATLAB 6.0 Release Notes

4-32

Transparency Helper Functions. This table lists functions that simplify the process
of setting transparency properties.

See “Transparency” in the MATLAB “3-D Visualization” documentation for
more information.

Renderer Autoselection
MATLAB automatically selects the rendering method used based on the
content of the figure. If it is available, MATLAB selects OpenGL as the
renderer when certain criteria are met. OpenGL is available on many computer
systems and is generally faster than the MATLAB other renderers (Painters
and Z-buffer). Using OpenGL enables MATLAB to access the graphics
hardware that is available on some systems.

Criteria for Autoselection of OpenGL Renderer. When the figure RendererMode
property is set to auto, MATLAB uses the OpenGL autoselection criteria to
determine whether to select the OpenGL renderer.

AlphaData Transparency data for patch, surface, or
image

AlphaDataMapping Transparency data mapping method

Alphamap Figure alphamap

FaceAlpha Transparency of the object’s faces

EdgeAlpha Transparency of the object’s edges

FaceVertexAlphaData Patch-only alpha data specification

Function Purpose

alpha Set or query transparency properties for
objects in current axes

alphamap Specify the figure alphamap

alim Set or query the axes alpha limits

Property Purpose (Continued)

4-33

When the RendererMode property is set to manual, MATLAB does not change
the renderer, regardless of changes to the figure contents.

If you do not want MATLAB to include OpenGL in the renderer autoselection
process, issue the following command.

opengl neverselect

See the opengl reference page for more information.

Camera Toolbar
The Camera Toolbar enables you to perform a number of viewing operations
interactively. To display the toolbar, select Camera Toolbar from the figure
window’s View menu.

See “View Control with the Camera Toolbar” in the MATLAB documentation
for more information.

External Interfaces/API Features

MATLAB Interface to Java
The new Java capability enables you to conveniently bring Java classes into
the MATLAB environment, to construct objects from those classes, to call
methods on the Java objects, and to save Java objects for later reloading — all
accomplished with MATLAB functions and commands. You can also develop
your own Java class definitions and make them available for use in MATLAB.

The MATLAB Java interface is intended for all MATLAB users who want to
take advantage of the special capabilities of the Java programming language.
The interface enables you to

• Access Java application programming interface (API) classes that support
essential activities such as I/O and networking. For example, the URL class
provides convenient access to resources on the internet.

• Easily construct Java objects in MATLAB

• Call Java object methods, using either Java or MATLAB syntax

• Pass data seamlessly between MATLAB variables and Java objects

You construct Java objects in MATLAB by calling the Java class constructor,
which has the same name as the class. For example, the following constructor

4 MATLAB 6.0 Release Notes

4-34

creates a Frame object with the title 'Frame A'. Any other properties are set to
their default values.

frame = java.awt.Frame('Frame A');

You call methods on this object using either Java syntax

frame.setTitle('Sample Frame')

Or MATLAB syntax.

setTitle(frame,'Sample Frame')

You can create n-dimensional arrays of Java objects and call methods on the
arrays. You reference and assign to elements of those arrays using MATLAB
matrix syntax. You can pass either MATLAB data or Java objects to the
methods of Java classes. MATLAB performs data type conversion on this data
where necessary.

See “Calling Java from MATLAB” under “External Interfaces/API” in the
online help, for full documentation of this feature.

New Functions for the Interface to Java
MATLAB 6.0 provides the following new functions to support the interface to
Java.

Function Purpose

import Add to the current Java packages import list

isjava Test whether an object is a Java object

javaArray Construct a Java array

javaMethod Invoke a Java method (used only in special cases)

javaObject Construct a Java object (used only in special cases)

methodsview Display information on all methods implemented by a
Java or MATLAB class

4-35

Existing Functions with Java Functionality Added
The following MATLAB functions now operate on Java objects, classes, and
methods.

Restriction on Unloading Java Classes
If you load a Java class into MATLAB and, sometime later, modify and
recompile the class, you must exit and restart MATLAB in order to use the

Function Purpose

cell Convert a Java object array into a MATLAB cell array

char Convert a java.lang.String object or array to a char
array or cell array of char arrays

class Return a Java class name

clear import Remove the Java packages import list

depfun Return Java class names that the file and its
subordinates use

disp Display a Java object

double Convert a Java object or array to a double array

exist Determine if a Java class exists

fieldnames Return the field names of a Java object

inmem Return the names of loaded Java classes

isa Identify an object as a Java class

isequal Compare Java objects for equality

methods Return all methods of a Java class

struct Convert a Java object or array to a MATLAB structure or
structure array

which Return the package, class, and method name for a Java
class method

4 MATLAB 6.0 Release Notes

4-36

updated class definition. This restriction exists because the Java VM does not
provide a way to unload a Java class once it has been loaded. Exiting and
restarting MATLAB terminates and restarts the Java VM, which then allows
you to load the updated class.

Similarly, the import function will not import an updated class definition. You
must first exit and restart MATLAB.

Java Version
The Java version used by MATLAB differs by platform and for Release 12 is as
shown in the following table.

To see the Java version used by MATLAB, type version -java in the command
window.

New C Language mx Functions
The following mx functions are new in this release.

Platform Java Version

Compaq Alpha 1.1.8-5

IBM 1.2.2

Linux 1.1.8

Microsoft Windows 1.1.8

SGI 1.1.8-00

Sun Solaris 1.1.8-09a

Function Purpose

mxCreateNumericMatrix Create a numeric matrix and initialize all its
data elements to 0

mxCreateScalarDouble Create a scalar, double-precision array
initialized to the specified value

4-37

Additional Supported Compilers
MATLAB now includes preconfigured options files for these compilers:

• LCC 2.4

• Compaq Fortran 6.1

• Borland’s C++Builder 3.0 (Borland C++, Version 5.3)

• Borland’s C++Builder 4.0 (Borland C++, Version 5.4)

• Borland’s C++Builder 5.0 (Borland C++, Version 5.5)

Note The LCC compiler is included in the MATLAB product set.

Using the Add-In for Visual Studio
The MathWorks provides a MATLAB add-in for the Visual Studio®
development system that lets you work easily within Microsoft Visual C/C++
(MSVC). The MATLAB add-in for Visual Studio greatly simplifies using M-files
in the MSVC environment. The add-in automates the integration of M-files
into Visual C++ projects. It is fully integrated with the MSVC environment.

The add-in for Visual Studio is automatically installed on your system when
you run either mbuild -setup or mex -setup and select Microsoft Visual C/C++
version 5 or 6.

However, there are several steps you must follow in order to use the add-in:

1 To build MEX-files with the add-in for Visual Studio, run the following
command at the MATLAB command prompt.

mex -setup

Follow the menus and choose either Microsoft Visual C/C++ 5.0 or 6.0. This
configures mex to use the selected Microsoft compiler and also installs the
necessary add-in files in your Microsoft Visual C/C++ directories.

2 To configure the MATLAB add-in for Visual Studio to work with Microsoft
Visual C/C++:

a Select Tools -> Customize from the MSVC menu.

b Click on the Add-ins and Macro Files tab.

4 MATLAB 6.0 Release Notes

4-38

c Click Browse, type <matlab>\bin\win32 as the filename, and select
Add-ins (.dll) from the Files of Type pulldown list.

Note If Windows is configured to “hide system files,” .dll files will not be
displayed even though they are present on disk. You must change your view
options to disable this feature.

d Select the MATLABAddin.dll file and click Open.

e Check MATLAB for Visual Studio on the Add-ins and Macro Files list
and click Close. The floating MATLAB add-in for Visual Studio toolbar
appears. The checkmark directs MSVC to automatically load the add-in
when you start MSVC again.

Note To run the MATLAB add-in for Visual Studio on Windows 98 systems,
add this line to your config.sys file.

shell=c:\command.com /e:32768 /p

For additional information on the MATLAB add-in for Visual Studio:

• See the MATLABAddin.hlp file in the <matlab>\bin\win32 directory, or

• Click on the Help icon in the MATLAB add-in for Visual Studio toolbar.

Command Line Override
To specify an option on a one-time basis to the mex script, you can use the mex
command line override feature. For example, the string /WX is a Microsoft
Visual C/C++ compiler option that causes warnings to be treated as errors. The
following statement uses the mex command line override feature.

mex yprime.c COMPFLAGS#"$COMPFLAGS /WX"

The string COMPFLAGS#"$COMPFLAGS /WX" tells mex to take the default value for
COMPFLAGS and append /WX (space slash W X) to it. To get a list of all

Help Icon

4-39

environment variables that can be overridden using this feature, use the
command

mex -v

Any variable name in all uppercase listed in the output can be overridden.

Serial I/O
The MATLAB serial port interface provides direct access to peripheral devices
such as modems, printers, and scientific instruments that you connect to your
computer’s serial port. This interface is established through a serial port object,
which you create with the serial function. The serial port object supports
functions and properties that allow you to

• Configure serial port communications

• Use serial port control pins

• Write and read data

• Use events and actions

• Record information to disk

Note The serial port interface is supported only for Microsoft Windows,
Linux, and Sun Solaris platforms.

Creating Graphical User Interfaces – Features

New Graphical User Interface Development Environment
GUIDE, the MATLAB graphical user interface development environment has
been redesigned since MATLAB 5.3. The GUIDE toolset for creating graphical
user interfaces (GUIs), or visual interfaces, consists of

• Layout Editor – add and arrange objects in the figure window.

• Alignment Tool – align objects with respect to each other.

• Property Inspector – inspect and set property values.

• Object Browser – observe a hierarchical list of the Handle Graphics objects
in the current MATLAB session.

• Menu Editor – create window menus and context menus.

4 MATLAB 6.0 Release Notes

4-40

You access all of these tools from the Layout Editor. To start the Layout Editor,
use the guide command.

New Code Architecture
GUIDE now employs a FIG-file to save layout information separately from the
M-file that programs the GUI. This approach has several advantages:

• Faster GUI loading

• Generated code provides the framework for application M-files with
application options to include a number of useful GUI programming
techniques, including:

- Cross-platform compatibility with respect to GUI figure size, screen
location, colors, and fonts

- Access to object handles without saving global variables or using findobj

- Single or multiple instances of GUI

- Function prototypes for callback routines

- GUI switchyard approach to the application program

See “Creating Graphical User Interfaces” in the MATLAB documentation for
more information.

Major Bug Fixes

4-41

Major Bug Fixes

Figure KeyPressFcn
The figure KeyPressFcn now generates an event for all keys pressed.
Previously, modifiers keys (such as, Control and Esc) did not generate an
event to executed the KeyPressFcn callback.

4 MATLAB 6.0 Release Notes

4-42

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from MATLAB
5.3 (Release 11.0) to MATLAB 6.0. This section is organized into the following
subsections:

• “Development Environment Issues” on page 4-42

• “Programming and Data Types Issues” on page 4-42

• “External Interfaces/API Issues” on page 4-52

• “Creating Graphical User Interfaces – Upgrade Issues” on page 4-57

Development Environment Issues

Preferences
Your preferences from Release 11 are not maintained in Release 12. Specify
new preferences for Release 12.

The Tools menu in the Release 11 Editor/Debugger, which allowed you to
create customized menu items, is no longer supported.

The dos Function Now Returns an Accurate Error Status
The dos function now returns a nonzero status when it encounters an error
condition. In the past, dos always returned zero, indicating success, regardless
of whether an error had actually occurred.

Programming and Data Types Issues

Evaluating Function Names
The feval function can be used with either function handles or function name
strings. Evaluation of function handles is preferred over evaluation of the
function name. For example, of the following two lines of code that evaluate the
humps function, the second is considered to be the preferable mechanism to use.

feval('humps', 0.5674); % Uses a function name string

feval(@humps, 0.5674); % Uses a function handle

To support backward compatibility, feval still accepts a function name string
as a first argument and evaluates the function named in the string. However,

Upgrading from an Earlier Release

4-43

function handles offer you the additional performance, reliability, and source
file control benefits listed in the earlier section “Programming and Data Types
Features”.

Argument Name Length for feval, load, and save
Most names in MATLAB are truncated to 31 characters. In previous versions
of MATLAB, this was not true for arguments passed to the feval, load, and
save functions. As a result, MATLAB was able to distinguish between names
passed into these functions when these names were identical up to the thirty
first character but unique at some point after that.

In MATLAB 6.0, arguments (other than filenames) that are passed to feval,
load, and save are truncated to a maximum of 31 characters. If your code uses
names in which the first 31 characters are identical, MATLAB will no longer
distinguish between these names within these functions.

Filenames do not hold to this rule. MATLAB uniquely identifies files with
names of any length.

Limit on Line Length of M-code Removed
There is no longer any limit on the length of a line of M-code in MATLAB.

feval Accepts Only Simple Function Names
In previous versions of MATLAB, you could call feval passing the full path to
the function to be evaluated. You could also call a subfunction or private
function directly using this method. For example, the following command
executes a subfunction that is defined within the file, subfile.

feval('subfile/mysubfunction')

In MATLAB 6.0, feval accepts only simple function names. To evaluate
subfunctions and private functions from beyond their usual scope, you can use
function handles.

Assigning to an Empty Structure Field
Attempting to assign a structure to a field of another structure now results in
an error if both of the following conditions are true:

• The field being assigned to has been initialized to an empty matrix.

4 MATLAB 6.0 Release Notes

4-44

• The field being assigned to is referenced in the assignment using an array
index.

For example:

mystruct.emptyfield = [];
mystruct.emptyfield(1) = struct('f1', 25);
??? Conversion to double from struct is not possible.

This operation did not return an error in previous versions of MATLAB.

Comparing With an Empty Structure Field
Attempting a string comparison between a string and a structure field now
results in an error, if all of the following conditions are true:

• The structure field being compared has been initialized to an empty cell
array.

• The structure field being compared is two or more levels down in the
structure array.

• The structure array is referenced in the strcmp using an array index.

mystruct.field1 = struct('field2',{});
strcmp('string', mystruct(1).field1.field2);
??? Error using ==> strcmp
Not enough input arguments.

This operation did not return an error in previous versions of MATLAB.

Separators Are Now Required Between Array Elements
MATLAB 5 allowed two or more elements of a cell array, vector, or matrix to
appear together without any separating text such as a comma or whitespace,
under certain circumstances. For example, the following were all legal
expressions.

[[1][2]] % equivalent to [1 2]
['hello'sprintf(' world')] % equivalent to ['hello world']
{{1}fft(2)} % equivalent to { {1} 2 }

MATLAB 6.0 issues a warning if it detects this situation upon first loading the
M-file into memory. Future versions of MATLAB will likely error at that point

Upgrading from an Earlier Release

4-45

instead. To remedy the situation, place a comma or whitespace between the
elements of the cell array, vector or matrix, as in

[[1],[2]]
['hello',sprintf(' world')]
{{1},fft(2)}

or

[[1] [2]]
['hello' sprintf(' world')]
{{1} fft(2)}

The following command displays the information given above.

help matrix_element_separators

Note The section “Running a Syntax Check on M-Files” on page 4-26
describes how MATLAB can help you locate missing element separators in
your M-files.

Logical AND and OR Precedence
Starting in MATLAB 6.0, the precedence of the logical AND (&) and logical OR
(|) operators now obeys the standard relationship, where AND has a higher
precedence than OR. This precedence agrees with the formal rules of Boolean
algebra as implemented in most other programming languages, as well as in
Simulink and Stateflow.

Previously, MATLAB would incorrectly treat the expression

y = a&b | c&d

as

y = (((a&b) |c) &d);

It now correctly treats it as

y = (a&b) | (c&d);

4 MATLAB 6.0 Release Notes

4-46

The only case where the new precedence will impact the result obtained is
when | appears before & within the same expression (without parentheses).
For example,

y = 1 | x & 0;

In MATLAB 5.3 and earlier, this statement would yield 0, being evaluated as

y = (1 | x) & 0;

In MATLAB 6.0 and beyond, this expression yields a 1 as the result, being
evaluated as

y = 1 | (x & 0);

Note We strongly recommend that you add parentheses to all expressions of
this form to avoid any potential problems with the interpretation of your code
between different versions of MATLAB.

A feature has been provided to allow the system to produce an error for any
expression that would change behavior from the old to the new interpretation.

feature('OrAndError', 0) % Warning for any expression that
 % changed behavior (default)

feature('OrAndError', 1) % Error for any expression that
 % changed behavior

Breaking From Try-Catch in a Loop
The MATLAB break function terminates the execution of a for or while loop.
If a for or while loop contains a try – catch statement, with a break placed
within the try – catch, the break statement terminates the for or while loop,
not the try – catch.

In the following example, a break has been placed in a try – catch statement
and the try – catch is within a for loop. In MATLAB 5, execution of the break
causes an incorrect branch from the try to the line, x = 5. The for loop is not
terminated, in this case.

In MATLAB 6.0, execution of the break within the try – catch terminates the
for loop. The next line executed following the break is y = 10.

Upgrading from an Earlier Release

4-47

for i = 1:10
 try
 <statement>
 break
 catch
 <statement>
 end
 x = 5 % Break to here in MATLAB 5
 end
y = 10 % Break to here in MATLAB 6.0

Specifying Field Names with setfield and getfield
The setfield and getfield functions set and get the value of a specified field
in a MATLAB structure array. In MATLAB 5, you could use the following
undocumented syntaxes to set fieldn to the value, newvalue and to read back
that value.

setfield(structurename.field1.fieldn,newvalue)
getfield(structurename.field1.fieldn)

These syntaxes are not supported in MATLAB 6.0. You should use the
following instead.

setfield(structurename,'field1','fieldn',newvalue)
getfield(structurename,'field1','fieldn')

For example:

a.b.c = 7;

a = setfield(a,'b','c',10);

getfield(a,'b','c')

ans =

 10

Using GETFIELD on a Structure Array
The getfield function returns the contents of a specified field in a MATLAB
structure array. In MATLAB 5, you would get an error if you requested more

4 MATLAB 6.0 Release Notes

4-48

than one return value on a single getfield call. For example, the following call
to getfield requests the contents of the x field for all three elements of the
structure array, a.

a(1).x=5;
a(2).x=12;
a(3).x=27;

getfield(a,'x')

In MATLAB 6.0, requesting more than one output value from getfield returns
a single output value and does not result in an error. The value returned is the
first of all output values requested in the call. In the example above, getfield
now returns the contents of a(1).x, because that is the first field to which
(a,'x') applies.

getfield(a,'x')
ans =
 5

You can obtain the contents of another structure array element by specifically
indexing to that element. For example:

getfield(a,{3},'x')
ans =
 27

Temporary Variables Are Anonymous
Individual cells of a cell array, fields of a MATLAB structure, and all temporary
variables are now guaranteed to be anonymous.

For example, the following function returns the name of the first input
argument passed to myfun.

function myfun(a)
inputname(1)

In MATLAB 5, a temporary variable, used to pass the value of eval('x'),
retains the variable name, x. In MATLAB 6.0, this variable is anonymous.

x = [1 2 3];

myfun(eval('x')) % Running MATLAB 5, ...

Upgrading from an Earlier Release

4-49

x % the output is x

myfun(eval('x')) % Running MATLAB 6.0, ...
'' % the output is ''

This change may result in a small difference in the size of some MAT files.

Platform Name Changes for the computer Function
The names returned by the computer function for some UNIX platforms have
changed for MATLAB 6.0. If you have code that uses the computer function for
special handling on some UNIX platforms, that code may behave differently
because of these platform name changes.

Processes and Memory Usage on Linux
On Linux, you may notice that MATLAB can start up a large number of
processes, even to handle simple tasks. These are actually threads, but due to
the “one process per thread” model on Linux, they appear as processes. When
you use the ps or top commands in Linux to show the processes running on your
system, you will see each of these threads listed as a separate process.

It is not uncommon for Linux to create a large number of threads for an
application. Even a simple Java program using AWT and native threads on
Linux will create nine threads.

Also displayed is the amount and percentage of memory used by each thread.
You should be aware that the memory used by the threads started by MATLAB
is shared between threads. The memory consumption reported for each thread
in this display actually represents the total memory used by all of the MATLAB
threads together.

Platform Pre-6.0 String String for MATLAB 6.0

Linux LNX86 GLNX86

SGI SGI SGI (no change)

SGI64 SGI64 SGI

HPUX 11.x HP700 HPUX

HPUX 10.20 HP700 HP700 (no change)

4 MATLAB 6.0 Release Notes

4-50

Obsolete Functions
The following MATLAB functions have either been renamed or have become
obsolete. For backwards compatibility, they have not been removed from the
language at this time. However, these functions may be removed in a future
release, so you are encouraged to discontinue use of the functions, or use the
functions that replace them.

Function Description

errortrap Replace with try ... catch

flops Floating-point operation count. Now returns 0.

fmin Minimize a function of one variable. Replace with
fminbnd. See instructions for converting your code in
“Function Functions” in the MATLAB
documentation.

fmins Minimize a function of several variables. Replace
with fminsearch. See instructions for converting
your code in “Function Functions” in the MATLAB
documentation.

foptions Default parameters used by the optimization
routines. Replace with optimget, optimset. See
instructions for converting your code in “Function
Functions” in the MATLAB documentation.

interp4, interp5,
interp6

Various two-dimensional data interpolation. Use
interp2 instead.

isdir Replace with exist

isieee Return logical true (1) on machines with IEEE
arithmetic and logical false (0) on machines without
IEEE arithmetic. Now returns 1 in all cases.

isstr Replace with ischar

meshdom Generate X and Y arrays for three-dimensional plots.
Use meshgrid instead.

Upgrading from an Earlier Release

4-51

The errortrap Function Is Disabled But Not Removed
The errortrap builtin function is obsolete in MATLAB 6.0. It is disabled, but
has not been removed from the language for purposes of backward
compatibility.

Specifying Ordinary Differential Equation (ODE) Problems
The ODE problem components that were passed to the solver through an ODE
file now are passed directly as arguments or need to be specified in an options
structure. The new syntax is

solver(@odefun,tspan,y0,options,p1,p2,...)

where odefun, tspan and y0 are required arguments. See the ODE solver and
odeset reference pages for details.

MATLAB 6.0 supports use of an ODE file for backwards compatibility, but new
functionality is available only with the new syntax.

Output from Background and Foreground Commands (UNIX)
In Release 12 on UNIX platforms, a background command (i.e., any system
command after which you add a &), such as

! cat startup.m &

nnls Nonnegative least squares. Replace with lsqnonneg.
See instructions for converting your code in
“Function Functions” in the MATLAB
documentation.

quad8 Numerically evaluate integral. Replaced by quadl.

saxis Sound axis scaling. Now has no effect on the output of
sound.

setstr Replace with char

str2mat Replace with char

table1 One-dimensional table lookup. Use interp1 instead.

table2 Two-dimensional table lookup. Use interp2 instead.

Function Description (Continued)

4 MATLAB 6.0 Release Notes

4-52

no longer produces any output. Prior to Release 12, a background command
sent output to the command window.

If you need to see the output from a command, either do not make the command
a background command (i.e., remove the &), or run the background command
in a separate xterm. To start another xterm, issue the following command.

! xterm &

In Release 12, foreground functions (i.e., non-background functions) send their
output to the diary, if the diary function has been issued. The output is also
displayed in the command window (prior to Release 12, foreground function
output was only displayed in the command window).

matlab_helper Process
To make the ! and unix commands operate more efficiently, in Release 12
MATLAB creates a secondary process, called matlab_helper, at startup.

This matlab_helper contains those elements of MATLAB necessary to run the
! and unix commands.

External Interfaces/API Issues

Recompile Fortran MEX-Files
Due to changes in the MATLAB/Fortran interface, Fortran MEX-files that
were built with versions of MATLAB prior to Release 12 (MATLAB 6.0) will not
work unless they are rebuilt with MATLAB 6.0.

MEX File Compatibility
The Release 12 MATLAB Application Program Interface (API) has several
compatibility issues relating to existing MEX-files:

• C MEX-files built under MATLAB 4.x may work with MATLAB 6.0, but are
no longer supported. You should rebuild these files using MATLAB 6.0.

• You will need to rebuild all MATLAB 5.x C MEX-files on the IBM_RS in
MATLAB 6.0 in order to run those MEX-files in MATLAB 6.0.

• MATLAB 6.0 C and Fortran MEX-files will not run on previous versions of
MATLAB.

Upgrading from an Earlier Release

4-53

Preference File Location for mex and mbuild
On Windows platforms, the mex and mbuild commands now look for their
preferences file in

C:\Winnt\profiles\<user>\application data\mathworks\matlab\R12

as opposed to the location used by previous versions.

C:\Winnt\profiles\<user>\application data\mathworks\matlab

On UNIX platforms, the mex and mbuild commands now look for their
preferences file in

/home/<user>/.matlab/R12

Therefore, to restore functionality to mex and mbuild, you will need to either

• Run mex -setup and/or mbuild -setup (easy way), or

• Manually move your options files from the directory used for preferences in
previous releases to the directory now used.

Linux MEX-files
For Release 12, you must rebuild Release 11 MEX-files on Linux.

Due to compatibility issues between versions of the GNU standard C libraries,
for Linux the file extension for MEX-files is now .mexglx. The file extension for
Release 11 was .mexlx. This change in file extensions means that the Release
11 MEX-files for Linux will be ignored by Release 12, unless you rebuild the
Release 11 MEX-files in Release 12.

SGI MEX-files
You will need to rebuild all MATLAB 5.x C MEX-files on the SGI in MATLAB
6.0 in order to run those MEX-files in MATLAB 6.0. There is no longer a
difference between SGI and SGI64 MEX-files; they are all built as n32.

Unsupported Compilers
MATLAB no longer supports the following compilers:

• Digital Visual Fortran version 6.0

• Microsoft Visual C/C++ version 4.2

4 MATLAB 6.0 Release Notes

4-54

In addition, The MathWorks will drop support for following compilers in a
future version of MATLAB. The MathWorks no longer tests with these
compilers:

• Watcom C/C++ version 11

• Watcom C/C++ version 10.6

Using the move Command for ActiveX Controls
In previous versions of MATLAB, the move command returned its first two
output variables in reversed order. In the following command,

pos = move(h);

the returned value pos, was [y x xsize ysize] where it should have been
[x y xsize ysize].

This has been corrected in MATLAB 6.0. If you have changed your code to
accommodate the reversed order in earlier versions of MATLAB, you should
correct the order of these variables for MATLAB 6.0.

Return Values for Methods Invoked on ActiveX Objects
In previous releases of MATLAB, invoking a method on an ActiveX object
always returned a value of type double. Given the example,

h = actxcontrol('MWSAMP.MwsampCtrl.1');
val = invoke(h, 'GetI4');

instead of returning an int32 value in val, MATLAB converted the type of the
object obtained from COM to a double.

MATLAB 6.0 returns the same type of object that was passed to it from COM
during method invocation. For example, in R12, val will be an int32 value
instead of a double.

This was done to be consistent with the method signature for a given method.
The method signatures for all methods of an interface can be obtained using
invoke on the handle to an ActiveX object. For example,

invoke(h)

will list all methods and their signatures for the mwsamp control.

Upgrading from an Earlier Release

4-55

If you prefer the former behavior, where MATLAB converts the return value to
double, you will need to explicitly call double on the method parameter you
wish to convert. For example,

val = double(invoke(h,'GetI4'));

yields the old behavior.

mex Function Now Returns Accurate Error Status
The mex syntax

mex myprog.c

now throws an error when it encounters an error condition.

The mex syntax

stat = mex('myprog.c')

now returns a nonzero value to stat when it encounters an error condition.

In the past, on Microsoft Windows platforms, mex always either successfully
exited or returned zero (indicating success), regardless of whether an error had
actually occurred.

To ensure code from before Release 12 works properly in Release 12, either use
try/catch logic to deal with error conditions, or use a form of mex that returns
an error status instead of throwing an error. Specifically

try
 mex something.c
catch
 disp(something failed);
end

or

status = mex(something.c);
if status ~= 0
 disp(something failed);
end

4 MATLAB 6.0 Release Notes

4-56

Using engEvalString with GUI-Intensive Applications
If you have graphical user interface (GUI) intensive applications that execute
a lot of callbacks through the MATLAB engine, you should force these callbacks
to be evaluated in the context of the base workspace. Use evalin to specify that
the base workspace is to be used in evaluating the callback expression, as
follows.

engEvalString(ep, evalin('base', expression))

Specifying the base workspace in this manner ensures that MATLAB will
process the callback correctly and return results for that call.

This does not apply to computational applications that do not execute
callbacks.

Starting MATLAB in gdb on GLINUX
If you debug MATLAB using gdb on a GLINUX system, your session will stop
execution whenever it creates a new thread. You can avoid these interruptions
by telling the system not to stop on SIGCONT events. You can then proceed to
debug your MATLAB code using nodesktop mode. You will still be notified
whenever a new thread is created, but your session will continue to run without
interruption.

Use the following statement in gdb to turn off triggering on SIGCONT events.

handle SIGCONT nostop

You can choose to debug in gdb without specifying SIGCONT nostop, but you will
have to type continue at each interruption to proceed with your session. The
following is a sample debug session in which SIGCONT nostop is specified.

% matlab -Dgdb

(gdb) handle SIGCONT nostop
Signal Stop Print Pass to program Description
SIGCONT No Yes Yes Continued

(gdb) run -nodesktop
[New Thread 4219]
Program received signal SIGCONT, Continued.
[New Thread 4220]
Program received signal SIGCONT, Continued.

Upgrading from an Earlier Release

4-57

MEX-File Extension Changes
The MEX-file extensions have changed for the Linux, SGI, and HP700
platforms for MATLAB 6.0.

Obsolete C Language MEX Functions
The following API function is obsolete and should not be used in MATLAB
programs. This function may not be available in a future version of MATLAB.

mexAddFlops

Creating Graphical User Interfaces – Upgrade Issues

Editing Version 5 GUIs with Version 6 GUIDE
In Version 5 GUIDE, GUI layouts were saved as MAT-file/M-file pairs. In
Version 6, GUIDE saves GUI layouts as FIG-files and M-files. The GUI layout
is defined in the FIG-file; there is no generated M-file containing layout
information.

Platform Pre-6.0 Extension Extension for MATLAB 6.0

Linux .mexlx .mexglx

SGI .mexsg .mexsg (no change)

SGI64 .mexsg64 .mexsg

HPUX 11.x .mexhp7 .mexhpux

HPUX 10.20 .mexhp7 .mexhp7 (no change)

4 MATLAB 6.0 Release Notes

4-58

Known Software and Documentation Problems
This section updates the MATLAB 6.0 documentation set, reflecting known
MATLAB 6.0 software and documentation problems.

This section about software and documentation problems is organized into the
following subsections:

• “Development Environment Problems” on page 4-58

• “External Interfaces/API Problems” on page 4-60

• “Graphics Problems” on page 4-61

• “GUIDE Problems” on page 4-61

• “Documentation Updates” on page 4-61

Development Environment Problems

Many Open Windows Can Cause a Crash or Hang (Windows 98/Me)
On Microsoft Windows 98/Me platforms, if you keep many windows open,
MATLAB may crash or hang. For example, if you keep open about 12 Stateflow
windows, or 25 figure windows, or 50 Simulink windows, you may experience
this problem. Note that these numbers are only estimates; the actual number
of open windows that may cause this problem depends on the resources
currently in use by other components and applications.

Maximized Desktop Window Not Remembered on Startup
When you start MATLAB, the desktop configuration is the same as when you
last closed MATLAB. However, if the desktop was maximized when you closed
MATLAB, it is not maximized upon startup.

Workspace Browser with Over 1000 Variables
If there are over 1000 variables in the workspace and the Workspace browser
is open, you might experience performance problems. It is suggested you close
the Workspace browser if you expect to have over 1000 variables in the
workspace.

Help Browser Doesn’t Support Mouse Wheel
The wheel on your mouse will not work in the Help browser.

Known Software and Documentation Problems

4-59

UNIX Display Problems when UNIX Client and Server Platforms Differ
If you run on UNIX and the platform for the server is different than that for
the client, there may be problems with the display of graphics on the client. See
the Technical Support Web page for a solution that lists the combinations
tested and any known display problems with them.

UNIX Help Browser Search Results Not Highlighted
On UNIX systems, when you perform a full text search using the Help browser,
the search returns all of the pages that contain the search term, however the
search term is not highlighted when you view a page. To find the term on a
page, use the Find in page field in the Help browser display pane.

Sun Solaris 16-Bit Display Not Supported
Sun's Java VM for Solaris does not support 16-bit displays. Therefore you
cannot use this configuration with Release 12. Use another display mode
instead.

Sun Solaris Arrow Keys Not Working
On some Sun Solaris systems, the arrow keys on the main keyboard are not
working properly. Instead, try the arrow keys in the numeric keypad.

ALPHA Shortcut Problems When Using Emacs Key Bindings in Editor
On the Alpha platform, if you set the Editor/Debugger preference for key
bindings to Emacs, the shortcuts for Undo (Ctrl+_) and Copy (~+W) do not
work.

Display Problems with Xoftware
If you use Xoftware on a PC to run MATLAB on a UNIX platform, you need to
do the following to avoid display problems:

1 Go to the Xoftware Control Panel.

2 From the Options menu, select Configuration.

3 Select the Window tab.

4 From the Options listing, select Concurrent Window Manager.

4 MATLAB 6.0 Release Notes

4-60

5 Under Settings, select Off.

6 Click OK.

External Interfaces/API Problems

Available Serial Ports on Windows 98
On Windows 98 platforms, you can access no more than four serial ports. The
four serial ports are labeled COM1 through COM4.

The COM1 and COM2 serial ports are standard components of your Windows
platform. You can add two additional serial ports, COM3 and COM4. If you
have more than four serial ports, you can access only the first four ports. If you
try to access a port that does not exist, MATLAB will return the following error
message after the fopen function is issued.

s = serial('COM3');
fopen(s)
??? Error using ==> serial/fopen
Error using ==> fopen
Cannot connect to the COM3 port. Possible reasons are another
application is connected to the port or the port does not exist.

Accessing Serial Ports on Solaris
If you repeatedly open and close one or more serial ports on Solaris, MATLAB
will become unresponsive. To minimize the chance of encountering this
problem, you should:

• Use only one serial port on your platform.

• Connect the serial port object to your device once per MATLAB session.

Known Software and Documentation Problems

4-61

Graphics Problems

The uimenu Function on Linux
If you use a string containing embedded spaces with the uimenu function,
MALTAB produces a segmentation violation on the Linux platform. Here is an
example that reproduces the problem.

hfig = figure;
uimenu = uimenu(hfig, Label ,[Test setstr(9) Menu]);

GUIDE Problems
This section lists know problems with GUIDE:

• If you try to open a file from the File menu of the Layout Editor and then
cancel the open operation, MATLAB displays an error dialog. Disregard this
message.

• On DEC Alpha, there is no Object Browser available. It will be available in
the final release of GUIDE.

• On DEC Alpha, figures activated in the Layout Editor are incorrectly sized.

Documentation Updates

Ctrll+Q Quits Without Issuing a Warning
If MATLAB is the active window in your system, using Ctrl+Q forces MATLAB
to quit without issuing any warning.

interp1 Extrapolation of Out of Range Values
A new argument enables interp1 to perform extrapolation for out of range
values for all methods. It also enables you to specify a scalar to be returned for
out of range values.

The PDF version of the interp1 reference page incorrectly states that the
default for all methods is for interp1 to perform extrapolation for out of range
values. In fact, interp1 performs extrapolation as the default only for the
'spline', 'pchip', and 'cubic' methods. For all other methods, it returns NaN
for out of range values. This behavior is unchanged from Version 5.

The HTML reference page for interp1 is correct.

4 MATLAB 6.0 Release Notes

4-62

	MATLAB 6.5.1 Release Notes
	New Features
	MATLAB Interface to Generic DLLs
	Relational Operators Work with int64, uint64
	Reading HDF5 Files
	Reading and Writing Data with JPEG Lossless Compression
	Reading and Writing L*a*b* Color Data

	Major Bug Fixes
	Seeking Within a File
	Reshaping to More Than Two Dimensions
	mkdir No Longer Fails On Windows NT
	Using sqrt with Complex Input
	Multiplying Matrices with Non-Double Entries
	Sorting a Sparse Row Vector or Matrix
	diff Produces Correct Results with Logical Inputs
	Opening Modal Dialog with Third-Party GUI Open
	Serial Port Object with Latest Windows Service Pack
	OpenGL Problem Using Notebook
	Lcc C Compiler Fixed to Handle Large C Files
	Bug Fixes in MATLAB Interface to COM
	Bug Fixes in Creating GUIs

	Upgrading from an Earlier Release
	Rebuild Macintosh MEX-files
	Function and Data Type Names in Generic DLL Interface

	Known Software and Documentation Problems
	Using xlsfinfo on Systems Without Excel

	MATLAB 6.5 Release Notes
	New Features
	Development Environment Features
	Mathematics Features
	Programming and Data Types Features
	Programming Tips Documentation
	Graphics Features
	External Interfaces/API Features
	Creating Graphical User Interfaces (GUIDE) Features

	Major Bug Fixes
	Platform Limitations
	Patch Required for HP-UX 11.0
	Development Environment Limitations
	Mathematics Limitations
	Graphics Limitations
	Creating Graphical User Interfaces (GUIDE) Limitations
	You May Need to Overwrite the MATLAB Default Choice of BLAS

	Upgrading from an Earlier Release
	Development Environment Upgrade Issues
	Mathematics Upgrade Issues
	Programming and Data Types Upgrade Issues
	Graphics Upgrade Issues
	External Interfaces/API Upgrade Issues
	Creating Graphical User Interfaces (GUIDE) Upgrade Issues

	Known Software and Documentation Problems

	MATLAB 6.1 Release Notes
	New Features
	Development Environment Features
	Mathematics Features
	Programming and Data Types Features
	Graphics Features
	OpenGL Renderer Feature — Microsoft Windows
	External Interfaces/API Features
	Creating Graphical User Interfaces — GUIDE

	Major Bug Fixes
	Development Environment
	Mathematics

	Upgrading from an Earlier Release
	Development Environment Issues
	Mathematics Issues
	Programming and Data Types Issues
	Graphics Issue
	External Interfaces/API Issues

	Known Software and Documentation Problems
	Development Environment Problems
	Documentation Updates

	MATLAB 6.0 Release Notes
	New Features
	Development Environment Features
	Mathematics Features
	Programming and Data Types Features
	Graphics Features
	3-D Visualization Features
	External Interfaces/API Features
	Creating Graphical User Interfaces – Features

	Major Bug Fixes
	Figure KeyPressFcn

	Upgrading from an Earlier Release
	Development Environment Issues
	Programming and Data Types Issues
	External Interfaces/API Issues
	Creating Graphical User Interfaces – Upgrade Issues

	Known Software and Documentation Problems
	Development Environment Problems
	External Interfaces/API Problems
	Graphics Problems
	GUIDE Problems
	Documentation Updates

